GOLF-TEE and GOLF-1 Selected for NASA’s CubeSat Launch Initiative

On March 2, 2018, NASA announced the ninth round of selections for the CubeSat Launch Initiative (CSLI). The first two AMSAT GOLF CubeSats, GOLF-TEE and GOLF-1, were among the 21 missions recommended for selection.

AMSAT must negotiate and execute a Cooperative Research and Development Agreement (CRADA) with NASA for each project to finalize selection. NASA anticipates a sufficient number of launch opportunities but does not guarantee that all recommended payloads will be launched.

GOLF-TEE (Technology Evaluation Environment) will serve as a rapidly deployable Low Earth Orbit (LEO) testbed for technologies necessary for a successful CubeSat mission to a wide variety of orbits.

AMSAT Vice-President Engineering Jerry Buxton, N0JY, said “The GOLF-TEE project tees off the next phase of our CubeSat program. GOLF-TEE provides AMSAT hardware and knowledge for Attitude Determination and Control (ADAC) capability and the opportunity to develop a 3U spaceframe with deployable solar panels that can be used in LEO or HEO missions, two of the major systems required in future GOLF and HEO missions.” Ragnarok Industries developed the attitude control system for the Lunar Heimdallr 6U CubeSat, a NASA Cube Quest Challenge finalist.

GOLF-TEE provides the opportunity for rapid deployment and on orbit testing of the AMSAT’s Advanced Satellite Communications and Exploration of New Technology (ASCENT) program’s technology, including radiation tolerant transponder and Integrated Housekeeping Unit (IHU) technologies that will lead the way for low cost commercial off-the-shelf (COTS) systems that can function in the MEO and HEO radiation environments. GOLF-TEE will also carry a Fox-1E design V/u linear transponder and RadFx (Radiation Effects) experiment for Vanderbilt University.

GOLF-TEE and the GOLF program will provide for the development of “Five and Dime” Field-Programmable Gate Array Software Defined Radio (FPGA SDR) transponders for use on a variety of missions and orbits.

The target date for launch of GOLF-TEE is 4Q 2019.

GOLF-1 will serve as a follow-on mission, also to LEO. Launch is targeted for 2020-2021.

GOLF-1 will require a de-orbiting plan that is in compliance with NASA’s NPR 8715.6 NASA Procedural Requirements for Limiting Orbital Debris in order to be manifested on a launch, due to the high altitude AMSAT has requested.

Please consider a donation to the AMSAT GOLF program for development, construction, and testing of the GOLF-TEE and GOLF-1 CubeSats. Donate at https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=STK27W4G9RMLC. Checks may be mailed to AMSAT, 10605 Concord St. #304, Kensington, MD 20895-2526.

AO-92 Commissioned, Open for Amateur Use

On the 03:25 UTC pass on January 26, 2018, AMSAT Vice President – Engineering Jerry Buxton, N0JY, announced that AO-92 had been commissioned and formally turned the satellite over to AMSAT Operations. AMSAT Vice President – Operations Drew Glasbrenner, KO4MA, then declared that AO-92 was now open for amateur use. Audio of the handover and first operational pass can be heard here:

 

Initially, the U/v FM transponder will be open continuously for a period of one week. After the first week, operations will be scheduled among the U/v FM transponder, L-Band Downshifter, Virginia Tech Camera, and the University of Iowa’s High Energy Radiation CubeSat Instrument (HERCI).

Schedule updates will appear in the AMSAT News Service Weekly Bulletins and will also be posted to the AMSAT-BB, AMSAT’s Twitter account (@AMSAT), the AMSAT North America Facebook group, and the AMSAT website at https://www.amsat.org/satellite-schedules/

AO-92 was launched on the PSLV-C40 mission from Satish Dhawan Space Centre in Sriharikota, India on January 12, 2018. For the past two weeks, the AMSAT Engineering and Operations teams have been testing the various modes and experiments on board. Testing has shown that both the U/v FM transponder and L-Band Downshifter work very well. The Virginia Tech camera has returned stunning photos and data from HERCI has been successfully downlinked.

AMSAT thanks the 178 stations worldwide that have used FoxTelem to collect telemetry and experiment data from AO-92 during the commissioning process. The collection of this data is crucial to the missions of AMSAT’s Fox-1 satellites. Please continue to collect data from AO-85, AO-91, and AO-92.

Radio Programming Charts

AO-92 Doppler Shift Correction (Mode U/v)

Memory

Your Transmit Frequency

(With 67 Hz Tone)

Your Receive Frequency

Acquisition of Signal (AOS) 435.340 MHz 145.880 MHz
Approaching 435.345 MHz 145.880 MHz
Time of Closest Approach (TCA) 435.350 MHz 145.880 MHz
Departing 435.355 MHz 145.880 MHz
Loss of Signal (LOS) 435.360 MHz 145.880 MHz

AO-92 Doppler Shift Correction (Mode L/v)

Memory

Your Transmit Frequency

(With 67 Hz Tone)

Your Receive Frequency

Acquisition of Signal (AOS) 1267.320 MHz 145.880 MHz
Approaching 1 1267.325 MHz 145.880 MHz
Approaching 2 1267.330 MHz 145.880 MHz
Approaching 3 1267.335 MHz 145.880 MHz
Approaching 4 1267.340 MHz 145.880 MHz
Approaching 5 1267.345 MHz 145.880 MHz
Time of Closest Approach (TCA) 1267.350 MHz 145.880 MHz
Departing 1 1267.355 MHz 145.880 MHz
Departing 2 1267.360 MHz 145.880 MHz
Departing 3 1267.365 MHz 145.880 MHz
Departing 4 1267.370 MHz 145.880 MHz
Departing 5 1267.375 MHz 145.880 MHz
Loss of Signal (LOS) 1267.380 MHz 145.880 MHz

AMSAT Rover Award Photo Contest

AMSAT’s Director of Contests and Awards Bruce Paige, KK5DO, solicited photos to be used on the certificate for the new AMSAT Rover Award. The four finalists are listed below. Please select your favorite. The top vote receiver will be used on the award certificate. Deadline to vote is January 29, 2018 at 23:59:59 UTC.

 

Photo 1

 

Photo 2

 

Photo 3

 

Photo 4

This poll is no longer accepting votes

Which photo should be used on the AMSAT Rover Award certificate?
×

AO-92 Commissioning Update: HERCI Experiment and L-Band Downshifter Tested

The AMSAT Engineering and Operations teams have been hard at work testing the various modes and experiments aboard AO-92 since its launch on January 12th. Since the last update, testing has concentrated on the University of Iowa’s High Energy CubeSat Radiation Instrument (HERCI) experiment and the AMSAT L-Band Downshifter.

The HERCI experiment was activated for the first time on January 18, 2018. According to Don Kirchner, KDØL, Research Engineer at the University of Iowa, “HERCI is intended to provide a mapping of radiation in a low earth orbit. This is of scientific interest for planning CubeSat test flights for low energy X-Ray detectors.”

“The instrument consists of a digital processing unit (DPU) derived from processors currently in orbit around Saturn on Cassini and on the way to Jupiter on the Juno spacecraft,” said Kirchner during a 2015 interview. “The DPU was shrunk to a CubeSat form factor with funding from the Iowa Space Grant Consortium.”

While the HERCI experiment collects data continuously while the transponder is in operation, the data is only downlinked in the satellite’s high-speed data.

The HERCI Engineering Model boards prior to initial test. The boards will be tested before installation of the radiation detector and hybrid circuits. The digital processor board is the first use of the Y90 microprocessor firmware which was donated by Monte Dalrymple, KR6DC, of Systemyde Corporation.

 

In a Space Physics laboratory in Van Allen Hall, University of Iowa Electrical Engineering students Patrick Maloney, KD9CPD; Tyler Dunkel, KE0CHR; Kevin Klosterman, KD9CPF; and Bryan Senchuk, KD9CPE inspect the HERCI development boards.

After testing operation of the HERCI experiment and the downlinking of the experiment data, focus turned to the AMSAT L-Band Downshifter. When enabled, the L-Band Downshifter converts signals received on 1267.350 MHz and injects them into the satellite’s 435 MHz receiver. Due to the increased path loss on 1267 MHz and the utilization of the satellite’s 435 MHz receive antenna on 1267 MHz, pre-launch estimates suggested that around 100 watts ERP may be required for horizon to horizon access in this mode. As always, pre-launch estimates are subject to change after real-world testing in-orbit.

At 02:19 UTC on January 20, 2018, the L-Band Downshifter was commanded on for the first time. Initial testing showed promising results. Your author was able to access the transponder with an Alinco DJ-G7T HT with 1 watt output into a Comet CYA-1216E yagi. Telemetry analysis showed that the Downshifter was functioning normally and AMSAT announced open testing.

Reports flowed in of QSOs occurring over Europe and Japan. Many reported QSOs made with 10 watts or less to modest yagi antennas. EB1AO reported success using 2-3 watts output to a small yagi. IW1DTU reported using 10 watts to a horizontally polarized 10 element loop yagi. IU2EFA reported two QSOs made using 10 watts to a vertical groundplane antenna. Reports from Japan were similar. JK2XXK reported two QSOs with 10 watts to a vertically polarized 17 element loop yagi and JA6PL reported a QSO with 10 watts to a horizontally polarized 23 element yagi.

EB1AO setting up for his first pass of AO-92 in Mode L/v

The first open pass over North America occurred at around 02:00 UTC on January 21, 2018. Seven stations were heard, your author, KE4AL, WB8OTH, WB8RJY, NS3L, N8TLV, and VE4AMU. KE4AL and VE4AMU were using similar stations, KE4AL was using a Kenwood TM-942A (10 watts output) and a Comet CYA-1216E yagi modified with holes drilled in the boom to add 2 meter Arrow II elements. VE4AMU was using the same antenna with a Kenwood TM-941A mobile radio. Your author was also using that antenna, but with an Alinco DJ-G7T handheld and was able to open the transponder at around 10 degrees of elevation. Most impressively, N8TLV was heard using just a Yaesu FT-104 handheld transceiver and the stock rubber duck for the uplink. He was weak, but readable from around 35-38 degrees of elevation. AMSAT plans to publish articles in the future discussing equipment options for use on the L-Band uplink.

Rick Behma, VE4AMU, working AO-92 in Mode L/v with a Kenwood TM-941 mobile transceiver and Comet CYA-1216E yagi crossed with 2 meter Arrow II elements.

Audio from your author’s recording of the AO-92 Mode L/v pass over North America can be heard here:

 

The L-Band Downshifter operates on a 24 hour timer and shut off on schedule around 02:19 UTC on January 21, 2018. Tests of the various modes and experiments continue. AO-92 is on track to be commissioned and handed over to AMSAT Operations on Friday, January 26th.