ANS-154 AMSAT News Service Weekly Bulletins

In this edition:

* Last Remaining CubeSatSim Kits Available in AMSAT Store
* Setting Up Your Own Satellite Ground Station with SatNOGS
* SpaceX Aims for Successful Reentry in Fourth Starship Test Flight
* GridMasterMap Satellite Top 100 Rovers June 2024 Rankings
* Changes to AMSAT-NA TLE Distribution for May 31, 2024
* ARISS News
* Upcoming Satellite Operations
* Hamfests, Conventions, Maker Faires, and Other Events
* Satellite Shorts From All Over

The AMSAT News Service bulletins are a free, weekly news and information service of AMSAT, the Radio Amateur Satellite Corporation. ANS publishes news related to Amateur Radio in Space including reports on the activities of a worldwide group of Amateur Radio operators who share an active interest in designing, building, launching and communicating through analog and digital Amateur Radio satellites.

The news feed on https://www.amsat.org publishes news of Amateur Radio in Space as soon as our volunteers can post it.

Please send any amateur satellite news or reports to: ans-editor [at] amsat.org

You can sign up for free e-mail delivery of the AMSAT News Service Bulletins via the ANS List; to join this list see: https://mailman.amsat.org/postorius/lists/ans.amsat.org/

ANS-154 AMSAT News Service Weekly Bulletins

To: All RADIO AMATEURS
From: Radio Amateur Satellite Corporation
712 H Street NE, Suite 1653
Washington, DC 20002

DATE 2024 Jun 02


Last Remaining CubeSatSim Kits Available in AMSAT Store

The final batch of CubeSatSim Kits are now available for purchase have completely sold out in the AMSAT Store. As of Saturday, June 1 at 1600 UTC, these kits are on sale were on sale for $400, including shipping to U.S. addresses. Offering a hands-on experience, the CubeSatSim Kit requires minimal soldering and assembly, making it accessible for both educational and public demonstration purposes. Watch for announcements of future availability of the CubeSatSim Kits from AMSAT.

Editor’s Note: The last available CubeSatSim Kit was purchased around 1815 UTC on Saturday June 1st. Article was left in this week’s ANS to share updated information on the CubeSatSim project.

The CubeSatSim Kit includes:

  • Fully assembled and tested PCBs (STEM Payload, Solar, and Battery Boards)
  • Raspberry Pi Zero WH with a Pi Camera and fully programmed micro-SD card, along with a fully programmed Raspberry Pi Pico WH
  • AMSAT logo Remove Before Flight tag switch
  • 3D printed frame, nylon screws, and nuts, with a mini screwdriver included for assembly
  • Metal standoffs, stacking headers, and JST jumpers for stacking the PCBs and Pi Zero WH
  • 10 solar panels with JST connectors and mounting tape, requiring minimal soldering
  • BME280 sensor (pressure, temperature, altitude, humidity) and MPU6050 IMU/gyro with male pin headers for easy socket connection
  • Two 6″ SMA coax cables and two SMA antennas

The kit also comes with an instruction sheet, parts inventory, and links to online instructions. Assembly time is estimated to be under two hours, with a soldering iron, solder, scissors, and the provided mini screwdriver required.

Limited quantities of the CubeSatSim Kit are now available from the AMSAT Store. [Credit: Alan Johnston, KU2Y]
The latest Beta v1.3 CubeSatSim features improvements over v1.2, such as an FM transceiver, Raspberry Pi Pico microcontroller, and RF command and control. It can also be modified to function as a 500mW high altitude balloon payload.

For those interested in creating their own CubeSatSim, Beta v1.3 blank PCB sets are available at the AMSAT Store for $35. These require additional components, which can be purchased for approximately $300 using the provided Bill of Materials.

For detailed updates, visit: https://www.amsat.org/amsat-cubesatsim-beta-release-v1-3/

Additional resources include:

For more information or to borrow a loaner CubeSat Simulator, contact Alan Johnston, AMSAT VP Educational Relations, at ku2y [at] arrl.net.

How to Order
Kits will be sold exclusively on the AMSAT Store website.
Only U.S. shipping addresses are eligible; orders with non-U.S. addresses will be refunded and closed.

About CubeSatSim
CubeSatSim is a low-cost satellite emulator powered by solar panels and batteries. It transmits UHF radio telemetry and can be expanded with additional sensors and modules, making it ideal for educational and public demonstrations.

Get Involved
During the beta period, purchasers are encouraged to test the new hardware and software and provide feedback on the instructions and documentation. Past purchasers of the CubeSatSim v1 PCB board sets are eligible for a free upgrade to the v1.3 set of PCB boards by contacting ku2y [at] arrl.net.

[ANS thanks Alan Johnston, KU2Y, AMSAT Vice President Educational Relations for the above information]


Setting Up Your Own Satellite Ground Station with SatNOGS

Robert Theiss, W5ITR, had the pleasure of interviewing Dan White, ADØCQ, from the Libre Space Foundation at the 2024 Dayton Hamvention about their innovative SatNOGS project. This initiative enables anyone to set up a satellite ground station, collect valuable data, and contribute to global satellite operations. You can watch the interview here on the Digital Rancher YouTube channel: https://www.youtube.com/watch?v=edNfD_YXZps

Dan explained that SatNOGS provides detailed blueprints and documentation for building a satellite ground station from scratch. The foundation offers the necessary software, identifies accessible hardware, and maintains the infrastructure that allows citizen scientists to engage in satellite-related sciences. Their vision of making outer space open and accessible through open-source technology is truly inspiring.

Setting up a basic SatNOGS station is surprisingly straightforward. All you need is a Raspberry Pi and an RTL-SDR dongle. Dan explained the process: the Libre Space Foundation provides a ready-to-use image for the Raspberry Pi, which includes the operating system and necessary configurations. You just create an account, register your station, and schedule a test observation.

Robert Theiss, W5ITR, interviews Dan White, ADØCQ, with Libre Space at the 2024 Dayton Hamvention. [Credit: Robert Theiss, W5ITR]
For those looking to enhance their setup, SatNOGS offers extensive documentation on building antennas and integrating additional components like low noise amplifiers and band pass filters. Although they plan to offer kits in the future, you can currently follow the detailed instructions and suggested links available on the SatNOGS Wiki: https://wiki.satnogs.org.

One of the most fascinating aspects of SatNOGS is its network of interconnected ground stations. Once your station is set up, it can schedule satellite passes and collect data, even while you’re asleep. This data is shared across the network, allowing other users to access it, and vice versa. This system ensures continuous monitoring and data collection, maximizing the utility of each station.

The SatNOGS community is highly active and supportive. The forums on the Libre Space Foundation’s website are a great resource for troubleshooting, sharing experiences, and staying updated on new satellite launches and developments.

Dan White, ADØCQ explains the makeup of their SatNOGS Demonstration Ground Station. [Credit: Robert Theiss, W5ITR]
For those interested in taking their ground station to the next level, SatNOGS supports more advanced setups with full azimuth and elevation rotators and larger antennas. These setups, while more costly, significantly increase data collection capabilities and overall performance. The Raspberry Pi used in the basic setup can interface with these advanced systems, allowing for automated tracking and data collection.

Dan shared insights into practical aspects such as bandwidth requirements and equipment wear and tear. While the data collected by a SatNOGS station can be bandwidth-intensive, there are settings to optimize for lower bandwidth situations by disabling audio uploads. Additionally, proper setup and maintenance of antennas and rotators can ensure long-term operation without significant issues.

The Libre Space Foundation and its SatNOGS project provide a unique opportunity for anyone interested in satellite and space communications to get involved. Their open-source approach and comprehensive support make it accessible even for beginners. Setting up your own satellite ground station is a rewarding experience, contributing to global space exploration and satellite communication. Check out the resources at https://satnogs.org and get involved!

[ANS thanks Robert Theiss, W5ITR, for the above information]


The 2024 AMSAT President’s Club coins are here now!
Help Support GOLF and Fox Plus

Join the AMSAT President’s Club today and help
Keep Amateur Radio in Space!
https://www.amsat.org/join-the-amsat-presidents-club/


SpaceX Aims for Successful Reentry in Fourth Starship Test Flight

SpaceX is targeting June 6th for the fourth test flight of its Starship megarocket, aiming to demonstrate the rocket’s ability to survive reentry, according to founder and CEO Elon Musk. This objective marks a crucial step in proving the reusability of the world’s most powerful rocket, following three prior test flights that showcased its capacity to reach space.

On May 20th, SpaceX carried out a crucial test by loading over 10 million pounds of super-cold methane and liquid oxygen propellants into the Super Heavy booster and the Starship upper stage. This practice countdown, which concluded before engine ignition, was one of the last major tests before the rocket’s flight. Following the test, the launch team drained the propellants, and ground crews removed the Starship upper stage to perform additional work on its heat shield.

The next steps include installing the rocket’s self-destruct mechanism, to be used if the vehicle deviates off course, and securing a commercial launch license from the Federal Aviation Administration (FAA). The FAA is reviewing the results of SpaceX’s previous Starship test flight in March, which was classified as a mishap after the vehicle lost control and disintegrated during reentry.

SpaceX has requested the FAA approve the upcoming launch before the mishap investigation concludes, arguing that the previous flight did not pose a public safety risk. An FAA spokesperson indicated that this could expedite the licensing process if no public safety issues are identified.

SpaceX’s fourth full-scale Starship rocket underwent a successful fueling test on May 20th. [Credit: SpaceX]
Meanwhile, SpaceX is preparing hardware for multiple rockets scheduled to fly later this year and building additional launch sites in Texas and Florida to support an increased launch frequency. However, significant design challenges remain before Starship becomes fully operational.

Unlike the March test flight, which included several experiments such as payload bay door operations and liquid oxygen transfer, the upcoming mission will concentrate on controlling the reentry of both the Super Heavy booster and the Starship upper stage. Both components broke apart during descent in the last flight.

SpaceX aims for the Super Heavy booster, named Booster 11, to achieve a controlled splashdown in the Gulf of Mexico, while the Starship upper stage, known as Ship 29, will attempt to survive the extreme reentry conditions. The rocket is equipped with about 18,000 hexagonal heat-absorbing ceramic tiles to protect its stainless-steel structure during reentry, where temperatures can reach approximately 2,600°F (1,430°C).

Musk has indicated that, assuming a successful splashdown, SpaceX could attempt landing a Super Heavy booster back at the Texas launch pad as early as the fifth test flight later this year. However, due to harsher reentry conditions from orbital velocity, landing the Starship upper stage might take longer.

Plasma buildup shown around Starship during Integrated Flight Test 3 on March 14, 2024. [Credit: SpaceX]
NASA, which selected Starship to ferry astronauts to and from the Moon for its Artemis program, is closely monitoring these developments. A critical milestone for NASA is the in-orbit engine restart, necessary for guiding Starship towards controlled reentry and future lunar missions. While this capability will not be tested on the next flight, achieving reliable engine performance remains a primary focus.

“For us, primarily, it’s the successful light of those Raptor engines and achieving main stage with all of them on Booster 11,” said Lisa Watson-Morgan, manager of NASA’s Human Landing System. The next flight aims to ensure consistent engine performance, crucial for SpaceX and NASA’s lunar ambitions.

Reigniting Raptor engines in space is essential for future missions, but SpaceX is taking a step-by-step approach. “If we can’t light all 33 engines on the booster, and if we can’t light all six engines on the ship, then we’re going to have trouble getting to where we need to go,” Watson-Morgan said. “So it’s basically a building-block approach.”

As SpaceX prepares for its fourth Starship test flight, the focus on surviving reentry represents a critical hurdle in its mission to develop a fully reusable rocket system capable of reaching, and returning from, space.

[ANS thanks Stephen Clark, Ars Technica, for the above information]


GridMasterMap Satellite Top 100 Rovers June 2024 Rankings

The June 2024 rankings for the Top 100 Rovers (Mixed LEO/MEO/GEO) in satellite operations, as determined by @GridMasterMap on Twitter, has been released. The ranking is determined by the number of grids and DXCC entities activated, taking into account only those grids where a minimum number of QSOs logged on the gridmaster.fr website have been validated by a third party. Grid numbers do not directly reflect the exact number of activations. Satellite operators are encouraged to upload their LoTW satellite contacts to https://gridmaster.fr in order to provide more accurate data.

Updated: 2024-06-01

1 ND9M 26 LU5ILA 51 W7WGC 76 FG8OJ
2 NJ7H 27 N5BO 52 EA4NF 77 HB9GWJ
3 JA9KRO 28 K8BL 53 AA5PK 78 PT9BM
4 N5UC 29 KE4AL 54 JL3RNZ 79 DF2ET
5 UT1FG 30 DL2GRC 55 SP5XSD 80 KI7UXT
6 OE3SEU 31 VE3HLS 56 AD7DB 81 KJ7NDY
7 DL6AP 32 KB5FHK 57 F4DXV 82 YU0W
8 WI7P 33 KI7UNJ 58 KE9AJ 83 WA9JBQ
9 DP0POL 34 LA9XGA 59 KI7QEK 84 N4DCW
10 N6UA 35 F4BKV 60 XE1ET 85 KB2YSI
11 K5ZM 36 JO2ASQ 61 N8RO 86 N0TEL
12 HA3FOK 37 N7AGF 62 KM4LAO 87 N6UTC
13 N9IP 38 XE3DX 63 VE1CWJ 88 VE3GOP
14 WY7AA 39 PA3GAN 64 SM3NRY 89 JM1CAX
15 W5PFG 40 K7TAB 65 N4UFO 90 K0FFY
16 AD0DX 41 KE0PBR 66 VA3VGR 91 CU2ZG
17 AK8CW 42 KI0KB 67 W1AW 92 KG4AKV
18 F5VMJ 43 PR8KW 68 VA7LM 93 VE7PTN
19 WD9EWK 44 KE0WPA 69 PT2AP 94 AF5CC
20 AD0HJ 45 VK5DG 70 DL4EA 95 VE6WK
21 DJ8MS 46 N6DNM 71 M1DDD 96 W8MTB
22 ON4AUC 47 EB1AO 72 W8LR 97 K6VHF
23 KX9X 48 AC0RA 73 LU4JVE 98 DK9JC
24 ND0C 49 JK2XXK 74 AA8CH 99 PT9ST
25 KG5CCI 50 N4AKV 75 VE1VOX 100 VO2AC

[ANS thanks @GridMasterMap for the above information]


Need new satellite antennas?
Purchase an M2 LEO-Pack from the AMSAT Store!When you purchase through AMSAT, a portion of the proceeds goes towards
Keeping Amateur Radio in Space.
https://amsat.org/product-category/hardware/


Changes to AMSAT-NA TLE Distribution for May 31, 2024

Two Line Elements or TLEs, often referred to as Keplerian elements or keps in the amateur community, are the inputs to the SGP4 standard mathematical model of spacecraft orbits used by most amateur tracking programs. Weekly updates are completely adequate for most amateur satellites. TLE bulletin files are updated daily in the first hour of the UTC day. New bulletin files will be posted immediately after reliable elements become available for new amateur satellites. More information may be found at https://www.amsat.org/keplerian-elements-resources/.

The following satellites have been removed from this week’s AMSAT-NA TLE distribution:
+ SO-114 NORAD Cat ID 51081 Decayed from orbit on or about 25 May 2024
+ SO-115 NORAD Cat ID 51080 Decayed from orbit on or about 26 May 2024
+ HODOYOSHI-1 NORAD Cat ID 40299 No Amateur Satellite Service payload

[ANS thanks AMSAT Orbital Elements page for the above information]


ARISS NEWS

Amateurs and others around the world may listen in on contacts between amateurs operating in schools and allowing students to interact with astronauts and cosmonauts aboard the International Space Station. The downlink frequency on which to listen is 145.800 MHz worldwide.

Recently Completed Contacts

Children’s Technopark “Quantorium”, Obninsk, Russia, direct via TBD
The ISS callsign was RSØISS
The scheduled crewmember was Aleksandr Grebyonkin RZ3DSE
The ARISS mentor was RV3DR
Contact was successful Mon 2024-05-27 14:10 UTC

Aznakaevsky district of the Tatarstan Republic, Russia, direct via TBD
The ISS callsign was RSØISS
The scheduled crewmember was Aleksandr Grebyonkin RZ3DSE
The ARISS mentor is RV3DR
Contact was successful 2024-05-31 Fri 12:30 UTC

Upcoming Contacts

“Creativity Development Center” in Pugachev, Russia, direct via TBD
The ISS callsign is presently scheduled to be RSØISS
The scheduled crewmember is Aleksandr Grebyonkin RZ3DSE
The ARISS mentor is RV3DR
Contact is go for 2024-06-03 10:00:00 UTC

Belmont Elementary School, Woodbridge, VA, direct via KM4TAY
The ISS callsign is presently scheduled to be NA1SS
The scheduled crewmember is Jeanette Epps KF5QNU
The ARISS mentor is AA4KN
Contact is go for: Mon 2024-06-03 16:03:00 UTC

Agrupamento de Escolas Dr. Serafim Leite, São João da Madeira, Portugal, direct via CS2ASL
The ISS callsign is presently scheduled to be OR4ISS
The scheduled crewmember is Matthew Dominick KCØTOR
The ARISS mentor is IKØUSO
Contact is go for: Thu 2024-06-06 10:33:44 UTC

Expect ISS radio outage for Progress 88 docking from May 31 1720 UTC until June 2 1415 UTC. The crossband repeater continues to be active (145.990 MHz up {PL 67} & 437.800 MHz down). If any crewmember is so inclined, all they have to do is pick up the microphone, raise the volume up, and talk on the crossband repeater. So give a listen, you just never know.

The packet system is also active (145.825 MHz up & down).

As always, if there is an EVA, a docking, or an undocking; the ARISS radios are turned off as part of the safety protocol.

Note, all times are approximate. It is recommended that you do your own orbital prediction or start listening about 10 minutes before the listed time.

The latest information on the operation mode can be found at https://www.ariss.org/current-status-of-iss-stations.html

The latest list of frequencies in use can be found at https://www.ariss.org/contact-the-iss.html

[ANS thanks Charlie Sufana, AJ9N, one of the ARISS operation team mentors for the above information]


Upcoming Satellite Operations

G0ABI will activate grid square IN79 from the historic Lizard Wireless Station at Bass Point via GreenCube (IO-117) satellite on June 6th. Lizard Wireless Station is the site where Guglielmo Marconi conducted his pioneering wireless experiments in 1900. Marconi proved radio communication over the horizon by receiving a transmission from the Isle of Wight in 1901 and later received the first SOS call in 1910. His work at “The Lizard” led to the first transatlantic radio signal, paving the way for global wireless communication. Celebrate Marconi’s legacy by making contact with G0ABI from this iconic location. For more details about the Lizard Wireless Station, visit https://shorturl.at/DMZ68.

A growing number of satellite rovers are currently engaged in sharing their grid square activations on https://hams.at. By visiting the website, you gain easy access to comprehensive information about the operators responsible for activating specific grid squares. Additionally, you have the ability to assess the match score between yourself and a particular rover for a given pass, while also being able to identify the upcoming satellite passes that are accessible from your location.

[ANS thanks Ian Parsons, K5ZM, AMSAT Rover Page Manager, for the above information]


Hamfests, Conventions, Maker Faires, and Other Events

AMSAT Ambassadors provide presentations, demonstrate communicating through amateur satellites, and host information tables at club meetings, hamfests, conventions, maker faires, and other events.

“Moon Day” at the Frontiers of Flight Museum
AMSAT and Amateur Radio satellites will be presented to the general public as part of this annual space themed STEAM event.  Volunteers to help at the table space and to do contact demos are welcome.  Contact tschuessler [at] amsat.org for more information.

July 20th, 2024
Dallas Love Field Airport
8008 Herb Kelleher Way
Dallas, TX 75235
https://flightmuseum.com/events/

38th Annual Small Satellite Conference
August 3-8, 2024
Logan, UT, USA
https://smallsat.org

Northeast HamXpostion
August 22-25, 2024
Best Western Royal Plaza Hotel & Trade Center
181 Boston Post Road W
Marlborough, MA 01752

2024 AMSAT Space Symposium and Annual General Meeting
October 25-27, 2024
Doubletree by Hilton Tampa Rocky Point Waterfront
3050 North Rocky Point Drive West
Tampa, FL 33607

[ANS thanks the AMSAT Events page for the above information]


Want to fly the colors on your own grid expedition?
Get an AMSAT car flag and other neat stuff from our Zazzle store!
25% of the purchase price of each product goes towards Keeping Amateur Radio in Space

Keeping Amateur Radio in Space
https://www.zazzle.com/amsat_gear


Satellite Shorts From All Over

+ China’s Chang’e 6 probe is set to land on the far side of the moon this weekend, aiming to return lunar samples to Earth. Launched on May 3, the robotic mission entered lunar orbit five days later and is targeting a touchdown on Saturday night, June 1st, for those in North America. The mission will study its landing area in the South Pole-Aitken Basin, collecting samples over three days before the ascent module returns to lunar orbit. These samples will be transferred to a return-to-Earth module, with a scheduled Earth landing on June 25. Once returned, the samples will be examined in Beijing and made available to the scientific community for research. This mission builds on the success of Chang’e 5, which returned 61 ounces of lunar material in 2020, and aims to provide insights into the moon’s magmatic processes and mantle properties. (ANS thanks Leonard David, Space.com, for the above information)

+ Blue Origin resumed crewed spaceflights on May 19 after a nearly two-year hiatus following a rocket mishap in 2022, which left Virgin Galactic as the sole operator in the suborbital tourism market. Among the six passengers was Ed Dwight, a former Air Force pilot who had been poised to become NASA’s first Black astronaut in the 1960s. Dwight, at 90 years old, became the oldest person to go to space, expressing the profound impact of the experience. Despite one of the capsule’s parachutes failing to fully inflate, the mission was deemed a success, and all passengers returned safely. This flight marks the seventh human mission for Blue Origin, highlighting its ambitions for future space endeavors. The company has now flown 37 people aboard its New Shepard vehicle, named after the first American in space, Alan Shepard. (ANS thanks Issam Ahmed, Phys.org, for the above information)

+ Rocket Lab successfully launched a small Earth-observation satellite for NASA on May 25, marking the company’s 48th liftoff. The Electron rocket lifted off from New Zealand at 3:41 a.m. EDT, carrying the first of two CubeSats for NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission. This satellite, deployed into orbit 53 minutes post-launch, will measure heat loss from Earth’s polar regions, a critical factor in understanding climate change. A second PREFIRE satellite will launch within three weeks, with both CubeSats set to operate in 326-mile-high circular orbits. The PREFIRE mission aims to enhance climate models by systematically measuring thermal infrared radiation over the Arctic and Antarctica. Notably, Rocket Lab’s Electron rocket, while designed for reusability, executed this mission without a recovery component. (ANS thanks Mike Wall, Space.com, for the above information)

+Voyager 1 has resumed transmitting science data from two of its four operational instruments after a computer issue arose in November 2023. The mission team is working on recalibrating the remaining two instruments, with plans to complete this in the coming weeks. This progress follows a five-month troubleshooting effort, during which the spacecraft began sending back usable engineering data. On May 17, commands were successfully sent to the 46-year-old spacecraft, located over 15 billion miles from Earth, enabling it to resume sending science data. The plasma wave subsystem and magnetometer are now operational, while efforts continue on the cosmic ray subsystem and low energy charged particle instrument. Launched in 1977, Voyager 1 and its twin, Voyager 2, are NASA’s longest-operating spacecraft and the first to explore beyond the heliosphere, having flown by Jupiter, Saturn, and, in Voyager 2’s case, Uranus and Neptune. (ANS thanks NASA Jet Propulsion Laboratory for the above information)


Join AMSAT today at https://launch.amsat.org/

In addition to regular membership, AMSAT offers membership to:

* Societies (a recognized group, clubs or organization).
* Primary and secondary school students are eligible for membership at one-half the standard yearly rate.
* Post-secondary school students enrolled in at least half-time status shall be eligible for the student rate for a maximum of 6 post-secondary years in this status.
* Memberships are available for annual and lifetime terms.

Contact info [at] amsat.org for additional membership information.

73 and remember to help Keep Amateur Radio in Space!

This week’s ANS Editor, Mitch Ahrenstorff, ADØHJ
ad0hj [at] amsat.org

ANS-126 AMSAT News Service Weekly Bulletins

In this edition:

* Greencube Terminal Program: Version 1.0.0.90 Enhancements and Updates
* Chang’e-6 Successfully Launches: China’s Historic Lunar Mission Begins
* NASA Reveals SpaceX’s Innovative Plan for Starship Refueling in Orbit
* GridMasterMap Satellite Top 100 Rovers May 2024 Rankings
* Changes to AMSAT-NA TLE Distribution for May 3, 2024
* ARISS News
* Upcoming Satellite Operations
* Hamfests, Conventions, Maker Faires, and Other Events
* Satellite Shorts From All Over

The AMSAT News Service bulletins are a free, weekly news and information service of AMSAT, the Radio Amateur Satellite Corporation. ANS publishes news related to Amateur Radio in Space including reports on the activities of a worldwide group of Amateur Radio operators who share an active interest in designing, building, launching and communicating through analog and digital Amateur Radio satellites.

The news feed on https://www.amsat.org publishes news of Amateur Radio in Space as soon as our volunteers can post it.

Please send any amateur satellite news or reports to: ans-editor [at] amsat.org

You can sign up for free e-mail delivery of the AMSAT News Service Bulletins via the ANS List; to join this list see: https://mailman.amsat.org/postorius/lists/ans.amsat.org/

ANS-126 AMSAT News Service Weekly Bulletins

To: All RADIO AMATEURS
From: Radio Amateur Satellite Corporation
712 H Street NE, Suite 1653
Washington, DC 20002

DATE 2024 May 05


Greencube Terminal Program: Version 1.0.0.90 Enhancements and Updates

The Greencube Terminal Program, developed by Carsten Groen, OZ9AAR, has taken another leap forward in its evolution with the launch of Version 1.0.0.90. This latest update brings a number of enhancements and fixes geared towards bolstering operational efficiency and enriching the user experience, particularly for IO-117 satellite enthusiasts.

One of the standout features of this update is the integration of UHM 2.1 (yoU Heard Me), supplanting the older UHM 2.0. It’s imperative for users to make the switch before May 14th, as UHM 2.0 will quit working thereafter. In the Live World View (LWV), users now have the flexibility to customize the positioning of the “radar view” of the current pass on the screen, allowing for more tailored satellite tracking experiences. Moreover, a bug that caused the frequency/band to default to 435.310 MHz regardless of the satellite selected when logging stations has been rectified.

Greencube Terminal Live World View [Credit: Carsten Groen, OZ9AAR]
Several user-requested enhancements have been incorporated, including the addition of time stamps (HH:MM:SS) when copying selected lines to the clipboard in the Traffic window and the removal of limitations on the length of callsigns (excluding SSID) in AX.25 mode so the full 6-character callsigns in AX.25 are supported. Additionally, users can now integrate their horizon into the “radar view” in LWV by defining horizon definitions in a text file.

Noteworthy improvements have also been made to message handling within the Terminal program. These include fixes to parsing issues with local TLE data caused by duplicate NORAD numbers and adjustments to the way UHM paints lines in the Traffic view to address reported errors. Furthermore, enhancements to LoTW status checks now ensure that updates occur automatically every 12 hours based on user-configured preferences, streamlining the process and ensuring accuracy.

Greencube Terminal Main Screen with UHM 2.1 [Credit: Carsten Groen, OZ9AAR]
The introduction of Live QSO Viewer (LQV) and Live World View (LWV) offers users innovative graphical representations of satellite traffic and station locations, enhancing situational awareness and operational efficiency. Additionally, the integration of GPS in version 1.0.0.84 enables users to connect GPS receivers for automatic grid location updates, simplifying tracking and reporting, especially for mobile users.

With the addition of features such as UHM integration, expanded satellite selection, and improved message handling, users can anticipate a more robust and user-friendly experience with the Greencube Terminal Program v1.0.0.90. These updates underscore a commitment to continuous improvement and innovation, ensuring Greencube Terminal Program remains the most popular application for GreenCube satellite communications. More information about installation, features, and updates can be found on Carsten’s website: https://www.moonbounce.dk/hamradio/greencube-terminal-program.html.

[ANS thanks Carsten Groen, OZ9AAR, for the above information]


Chang’e-6 Successfully Launches: China’s Historic Lunar Mission Begins

China’s Chang’e-6 mission embarked on its historic journey on May 3rd, launching aboard a Long March 5 rocket from the Wenchang Satellite Launch Center on Hainan Island, China. This mission aims to retrieve samples from the far side of the Moon, a feat never before achieved. The spacecraft is set to undergo a 53-day voyage to the Moon and back, where it will collect lunar soil and rocks, offering invaluable insights into the Moon’s ancient history.

The mission targets the Moon’s South Pole-Aitken (SPA) basin, a region of particular interest due to its potential to unveil crucial information about the Moon’s past. This basin, formed by an ancient impact, holds clues about the events that shaped both the Moon and Earth billions of years ago, providing an opportunity to understand the differences between the near and far sides of the Moon.

Rendering of Chang’e-6 Spacecraft in Lunar Orbit. [Credit: Chinese National Space Agency (CNSA)]
Unlike previous lunar missions, which primarily focused on the near side, Chang’e-6 will explore the challenging terrain of the far side. Landing and communicating on this side of the Moon require sophisticated technology, including communications relay satellites. China, having achieved the first successful lunar far-side landing in 2019 with Chang’e-4, now endeavors to bring back samples from this uncharted territory.

The Chang’e-6 spacecraft is comprised of four components: an orbiter, lander, ascender, and reentry module. Upon reaching lunar orbit, the lander and ascender will descend to the Moon’s surface, collect approximately 2 kilograms (4.4 pounds) of lunar material using specialized tools, and return to lunar orbit. The orbiter will then carry the samples back to Earth, releasing the reentry module into the atmosphere for a soft landing.

Chang’e-6 Spacecraft’s Landing Site on the Moon’s SPA Basin. [Credit: Chinese National Space Agency (CNSA)]
During its 53-day mission, Chang’e-6 will communicate with Earth through the Queqiao-2 relay satellite, which features a large parabolic antenna. This communication link will enable scientists to monitor and control the mission’s progress and ensure the safe return of valuable lunar samples.

The scientific significance of Chang’e-6 extends beyond lunar exploration. The samples it retrieves will shed light on the Solar System’s tumultuous past, particularly the Late Heavy Bombardment period around 3.9 billion years ago. By studying the SPA basin’s age and composition, scientists hope to discern the origins of this event and its implications for Earth’s history and the potential for life elsewhere in the universe.

[ANS thanks Jason Davis, The Planetary Society, for the above information]


The 2024 AMSAT President’s Club coins are here now!
Help Support GOLF and Fox Plus

Join the AMSAT President’s Club today and help
Keep Amateur Radio in Space!
https://www.amsat.org/join-the-amsat-presidents-club/


NASA Reveals SpaceX’s Innovative Plan for Starship Refueling in Orbit

NASA recently outlined SpaceX’s plans for refueling Starships in low-Earth orbit, a critical step toward enabling ambitious lunar missions. Scheduled for next year, this demonstration involves linking two Starships in orbit. Under contract with NASA’s Artemis program, SpaceX aims to supply human-rated Starships for lunar landings, although the targeted 2026 launch for Artemis III highlights the project’s ambitious nature. Last year, NASA awarded a contract to Blue Origin, providing alternative options for lunar missions. Both companies designed their landers with future refueling capabilities, allowing for multiple missions and potential resource utilization on the Moon or Mars.

Amit Kshatriya, leading NASA’s “Moon to Mars” program, outlined SpaceX’s strategy for in-space refueling during a recent meeting. Despite challenges, progress is evident as SpaceX prepares for upcoming Starship test flights, aiming to tackle crucial technical hurdles. Before lunar missions become a reality, mastering in-space refueling is essential. SpaceX plans to demonstrate large-scale propellant transfer between two Starships in orbit next year. This milestone follows a successful cryogenic propellant transfer test during a previous Starship flight, funded by NASA.

Artist’s Illustration of Two SpaceX Starships Docked in Orbit. [Credit: SpaceX]
With each test flight, SpaceX aims to enhance capabilities necessary for lunar landings. These include precise booster landings, in-orbit engine restarts, and controlled reentries—a prerequisite for deep space exploration. SpaceX’s long-term goal of frequent Starship launches hinges on rapid reusability, aligning with Elon Musk’s vision. Despite the challenges, progress is tangible, with plans underway to establish additional launch infrastructure in Texas and Florida.

The upcoming refueling demonstration involves autonomously linking two Starships in orbit, a task not without complexities. Yet, leveraging experience from Dragon capsule missions, SpaceX aims to navigate these challenges. The propellant transfer process relies on a pressure differential mechanism, simplifying the flow between donor and recipient tanks. Fine-tuning this procedure is crucial to avoid propellant loss during transfers.

Plans for SpaceX’s Ship-to-Ship Cryogenic Transfer Demonstration. [Credit: NASA/Amit Kshatriya]
Success in these demonstrations will determine the number of refueling tankers required for lunar missions. While predictions exist, practical tests will validate these estimates, ensuring mission success. As SpaceX pushes boundaries, industry experts emphasize the importance of collaboration and innovation. With a resilient team and the right attitude, SpaceX aims to overcome challenges and pioneer the next era of space exploration. While ambitious, SpaceX’s endeavors signify a paradigm shift in space exploration, driven by a collective vision of advancing humanity’s reach beyond Earth’s orbit.

[ANS thanks Stephen Clark, Ars Technica, for the above information]


GridMasterMap Satellite Top 100 Rovers May 2024 Rankings

The May 2024 rankings for the Top 100 Rovers (Mixed LEO/MEO/GEO) in satellite operations, as determined by @GridMasterMap on Twitter, has been released. The ranking is determined by the number of grids and DXCC entities activated, taking into account only those grids where a minimum number of QSOs logged on the gridmaster.fr website have been validated by a third party. Grid numbers do not directly reflect the exact number of activations. Satellite operators are encouraged to upload their LoTW satellite contacts to https://gridmaster.fr in order to provide more accurate data.

Updated: 2024-05-01

1 ND9M 26 N5BO 51 SP5XSD 76 FG8OJ
2 NJ7H 27 K8BL 52 AD7DB 77 PT9BM
3 JA9KRO 28 LU5ILA 53 JL3RNZ 78 KJ7NDY
4 N5UC 29 KE4AL 54 F4DXV 79 KI7UXT
5 UT1FG 30 DL2GRC 55 KE9AJ 80 YU0W
6 OE3SEU 31 VE3HLS 56 KI7QEK 81 WA9JBQ
7 DL6AP 32 KB5FHK 57 PA3GAN 82 N4DCW
8 WI7P 33 KI7UNJ 58 N8RO 83 HB9GWJ
9 HA3FOK 34 LA9XGA 59 XE1ET 84 KB2YSI
10 K5ZM 35 F4BKV 60 KM4LAO 85 N0TEL
11 N6UA 36 N7AGF 61 VE1CWJ 86 VE3GOP
12 N9IP 37 JO2ASQ 62 SM3NRY 87 KI0KB
13 WY7AA 38 XE3DX 63 N4UFO 88 JM1CAX
14 W5PFG 39 K7TAB 64 VA3VGR 89 CU2ZG
15 AK8CW 40 KE0PBR 65 W1AW 90 K0FFY
16 AD0DX 41 KE0WPA 66 VA7LM 91 KG4AKV
17 DP0POL 42 N6DNM 67 PT2AP 92 AF5CC
18 WD9EWK 43 PR8KW 68 M1DDD 93 VE6WK
19 AD0HJ 44 AC0RA 69 DL4EA 94 W8MTB
20 ON4AUC 45 EB1AO 70 AA8CH 95 VE7PTN
21 KX9X 46 JK2XXK 71 N4AKV 96 DK9JC
22 KG5CCI 47 W7WGC 72 LU4JVE 97 K6VHF
23 ND0C 48 EA4NF 73 VE1VOX 98 N6UTC
24 DJ8MS 49 VK5DG 74 W8LR 99 PT9ST
25 F5VMJ 50 AA5PK 75 DF2ET 100 VO2AC

[ANS thanks @GridMasterMap for the above information]


Need new satellite antennas?
Purchase an M2 LEO-Pack from the AMSAT Store!When you purchase through AMSAT, a portion of the proceeds goes towards
Keeping Amateur Radio in Space.
https://amsat.org/product-category/hardware/


Changes to AMSAT-NA TLE Distribution for May 3, 2024

Two Line Elements or TLEs, often referred to as Keplerian elements or keps in the amateur community, are the inputs to the SGP4 standard mathematical model of spacecraft orbits used by most amateur tracking programs. Weekly updates are completely adequate for most amateur satellites. TLE bulletin files are updated daily in the first hour of the UTC day. New bulletin files will be posted immediately after reliable elements become available for new amateur satellites. More information may be found at https://www.amsat.org/keplerian-elements-resources/.

Correction to last week’s addition:
KASHIWA NORAD Cat ID 59508 Correct downlink 437.3753 MHz (Thanks Nico PA0DLO)

The following satellites have been removed from this week’s AMSAT-NA TLE distribution:
NIUSAT NORAD Cat ID 42766 Decayed from orbit on or about 27 April 2024
ExoCube 2 NORAD Cat ID 47319 Decayed from orbit on or about 30 April 2024

[ANS thanks AMSAT Orbital Elements page for the above information]


ARISS NEWS

Amateurs and others around the world may listen in on contacts between amateurs operating in schools and allowing students to interact with astronauts and cosmonauts aboard the International Space Station. The downlink frequency on which to listen is 145.800 MHz worldwide.

Recently Completed Contacts

Centennial Campus Magnet Middle School Center for Innovation, Raleigh, NC, telebridge via K6DUE
The ISS callsign was NA1SS
The scheduled crewmember was Matthew Dominick KCØTOR
The ARISS mentor was AA6TB
Contact was successful: Wed 2024-05-01 12:03:49 UTC
Watch for Livestream at: https://www.youtube.com/watch?v=lnAZJknxsgw

Wireless Institute of Australia / Bundaberg High School Amateur Radio Club, Bundaberg, Queensland, Australia, telebridge via VK6MJ
The ISS callsign was NA1SS
The scheduled crewmember was Mike Barratt KD5MIJ
The ARISS mentor was VK4KHZ
Contact was successful: Sat 2024-05-04 10:28:24 UTC

Upcoming Contacts

Eric Knows CIC, Newcastle upon Tyne, United Kingdom, telebridge via K6DUE
The ISS callsign is presently scheduled to be NA1SS
The scheduled crewmember is Matthew Dominick KCØTOR
The ARISS mentor is MØXTD
Contact is go for: Sat 2024-05-11 08:42:32 UTC

The crossband repeater continues to be active (145.990 MHz up {PL 67} & 437.800 MHz down). If any crewmember is so inclined, all they have to do is pick up the microphone, raise the volume up, and talk on the crossband repeater. So give a listen, you just never know.

The packet system is also active (145.825 MHz up & down).

As always, if there is an EVA, a docking, or an undocking; the ARISS radios are turned off as part of the safety protocol.

Note, all times are approximate. It is recommended that you do your own orbital prediction or start listening about 10 minutes before the listed time.

The latest information on the operation mode can be found at https://www.ariss.org/current-status-of-iss-stations.html

The latest list of frequencies in use can be found at https://www.ariss.org/contact-the-iss.html

[ANS thanks Charlie Sufana, AJ9N, one of the ARISS operation team mentors for the above information]


Upcoming Satellite Operations

A growing number of satellite rovers are currently engaged in sharing their grid square activations on https://hams.at. By visiting the website, you gain easy access to comprehensive information about the operators responsible for activating specific grid squares. Additionally, you have the ability to assess the match score between yourself and a particular rover for a given pass, while also being able to identify the upcoming satellite passes that are accessible from your location.

[ANS thanks Ian Parsons, K5ZM, AMSAT rover page manager, for the above information]


Hamfests, Conventions, Maker Faires, and Other Events

AMSAT Ambassadors provide presentations, demonstrate communicating through amateur satellites, and host information tables at club meetings, hamfests, conventions, maker faires, and other events.

Dayton Hamvention 2024
Friday May 17th – Sunday May 19th
Greene County Fairgrounds and Expo Center
120 Fairground Road
Xenia, OH 45385
https://hamvention.org

38th Annual Small Satellite Conference
August 3-8, 2024
Logan, UT, USA
https://smallsat.org

[ANS thanks the AMSAT Events page for the above information]


Want to fly the colors on your own grid expedition?
Get an AMSAT car flag and other neat stuff from our Zazzle store!
25% of the purchase price of each product goes towards Keeping Amateur Radio in Space

Keeping Amateur Radio in Space
https://www.zazzle.com/amsat_gear


Satellite Shorts From All Over

+ Congratulations are in order for RJ Bragg, WY7AA, and Andrew Northam, KE8FZT, for their impressive accomplishments in earning GridMaster Awards #64 and #65, respectively! This esteemed recognition, initiated by Star Comm Group in 2014 and backed by Damon Runion, WA4HFN, and Rick Tillman, WA4NVM, has now been entrusted to AMSAT for the benefit of the entire amateur satellite community. The GridMaster Award celebrates radio amateurs worldwide who achieve two-way communication via amateur satellite with operators in all 488 Maidenhead grids across the contiguous United States of America. For more details on this distinguished award, visit the AMSAT website at https://www.amsat.org/gridmaster/. Andrew and RJ, your achievement is truly commendable—well done! (ANS thanks Bruce Paige, KK5DO, AMSAT Director of Contests and Awards for the above information)

+ AMSAT Italia proudly announces the acquisition of ownership of the IO-117 “GreenCube” satellite, with Sapienza University retaining partial ownership. Through collaboration, the satellite will continue amateur radio operations post-primary scientific mission completion, preventing its decommissioning. This transfer of legal responsibility from the Italian Space Agency to AMSAT Italia solidifies the satellite’s exclusive amateur radio use. Originally named GreenCube, it was developed by Sapienza University, ENEA, and University of Naples Federico II, with AMSAT Italia contributing to its design. On October 29, 2022, GreenCube became the first ham radio satellite to operate in a MEO orbit, designated as Italy-OSCAR 117 (IO-117) by AMSAT. AMSAT Italia, Sapienza Space Systems, and Space Surveillance Laboratory commit to operating the satellite for continued service to the amateur radio community. (ANS thanks AMSAT Italia for the above information)

+ Boeing’s Crew Flight Test (CFT) of the CST-100 Starliner spacecraft is scheduled for Monday, May 6, with a targeted launch time of 10:34 p.m. EDT. Led by Commander Barry “Butch” Wilmore and Pilot Suni Williams, both experienced NASA astronauts, this mission comes after over a decade in development. The duo will spend at least eight days aboard the International Space Station (ISS) conducting various flight test objectives before returning for a solid-ground landing. Wilmore and Williams will be the first humans to fly atop the United Launch Alliance (ULA) Atlas V rocket since 1963 and execute the first “land” landing of a crew-carrying U.S. spacecraft since 2011. Originally not slated for this mission, Wilmore and Williams stepped in after several crew changes, with Williams set to become the first woman to fly the maiden voyage of a new orbital-class vehicle. Deep into pre-flight quarantine, the astronauts express their readiness, acknowledging the challenges and the learning opportunities that lie ahead in this ambitious test flight. (ANS thanks Ben Evans, AmericaSpace, for the above information)

+ On April 25, 2024, Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub conducted a successful spacewalk, lasting four hours and 36 minutes, to install communication and corrosion analysis equipment on the International Space Station (ISS). The spacewalk aimed to deploy a communications system and install equipment to analyze corrosion levels on station surfaces. Kononenko, with seven spacewalks under his belt, and Chub, on his second, completed their tasks, including deploying a panel for a synthetic radar communications system on the Russian segment of the ISS. This mission marked the 270th spacewalk for assembly, maintenance, and upgrades of the space station, with Kononenko and Chub having arrived at the station on September 15, 2023, aboard the Soyuz MS-24 spacecraft. (ANS thanks SciTechDaily.com, for the above information)

+ Two new Galileo navigation satellites were launched from Kennedy Space Center on Saturday, April 27th, at 8:34 p.m. EDT, bolstering the system’s constellation to 30 satellites and amplifying reliability and precision for billions of users globally. Since its inception in 2016, Galileo has been pivotal across various sectors such as rail, maritime, agriculture, and rescue operations, contributing significantly to the EU’s GDP, with 10% reliant on satellite navigation. This launch follows the recent introduction of the new Public Regulated Service signals, further solidifying Europe’s independence in satellite navigation. Notably, this marks the first time Galileo satellites have been launched aboard an American-made rocket, a significant development amid Europe’s diminishing space collaboration with Russia. (ANS thanks the European Space Agency, for the above information)

+ SpaceX’s 30th Dragon cargo mission successfully returned to Earth, splashing down off the coast of Florida in the early hours of April 30th. Departing from the International Space Station on April 28th, the capsule completed its mission under the CRS-30 contract with NASA. Loaded with over 4,100 pounds of supplies and scientific experiments, Dragon is unique in its capability to safely bring gear back from the ISS, unlike other operational spacecraft that burn up upon reentry. This return enables quick transportation of experiments to NASA’s facilities for data collection. Meanwhile, another SpaceX vehicle remains docked at the ISS, supporting the Crew-8 astronaut mission for NASA, launched in early March. (ANS thanks Mike Wall, Space.com, for the above information)


Join AMSAT today at https://launch.amsat.org/

In addition to regular membership, AMSAT offers membership to:

* Societies (a recognized group, clubs or organization).
* Primary and secondary school students are eligible for membership at one-half the standard yearly rate.
* Post-secondary school students enrolled in at least half-time status shall be eligible for the student rate for a maximum of 6 post-secondary years in this status.
* Memberships are available for annual and lifetime terms.

Contact info [at] amsat.org for additional membership information.

73 and remember to help Keep Amateur Radio in Space!

This week’s ANS Editor, Mitch Ahrenstorff, ADØHJ
ad0hj [at] amsat.org

ANS-098 AMSAT News Service Weekly Bulletins

In this edition:

* AMSAT Seeks Volunteers to Assist with 2024 Hamvention AMSAT Booth
* AMSAT AO-109 (Fox-1E) Satellite Sets New Processor Uptime Record
* ESA Unveils Proba-3 Mission: Artificial Solar Eclipses on Demand
* GridMasterMap Satellite Top 100 Rovers April 2024 Rankings
* Changes to AMSAT-NA TLE Distribution for April 5, 2024
* ARISS News
* Upcoming Satellite Operations
* Hamfests, Conventions, Maker Faires, and Other Events
* Satellite Shorts From All Over

The AMSAT News Service bulletins are a free, weekly news and information service of AMSAT, the Radio Amateur Satellite Corporation. ANS publishes news related to Amateur Radio in Space including reports on the activities of a worldwide group of Amateur Radio operators who share an active interest in designing, building, launching and communicating through analog and digital Amateur Radio satellites.

The news feed on https://www.amsat.org publishes news of Amateur Radio in Space as soon as our volunteers can post it.

Please send any amateur satellite news or reports to: ans-editor [at] amsat.org

You can sign up for free e-mail delivery of the AMSAT News Service Bulletins via the ANS List; to join this list see: https://mailman.amsat.org/postorius/lists/ans.amsat.org/

ANS-098 AMSAT News Service Weekly Bulletins

To: All RADIO AMATEURS
From: Radio Amateur Satellite Corporation
712 H Street NE, Suite 1653
Washington, DC 20002

DATE 2024 April 07


AMSAT Seeks Volunteers to Assist with 2024 Hamvention AMSAT Booth

With less than six weeks until the 2024 Dayton Hamvention, scheduled for May 17th to May 19th in Xenia, Ohio, excitement mounts for the 72nd installment of this premier gathering for ham operators worldwide. In 2023, attendance surged to 33,861, surpassing both the previous year and pre-pandemic records, indicating growing enthusiasm. The 2024 event, anticipated to draw even larger crowds, will also host the ARRL National Convention.

AMSAT, a key exhibitor, will once again occupy a spacious 1,200 square foot area at Building 1’s north end, known as the Maxim building. This location, ideally situated for its ventilation and access to the outdoor satellite ground station, is perfect for showcasing AMSAT’s exhibits. The booth will feature various attractions, including engineering team members, CubeSatSim, Beginner’s Corner, Youth Initiative, merchandise sales, software demonstrations, and membership sign-ups. Notably, this year’s booth will spotlight the revamped AMSAT Ambassador program, offering opportunities for engagement.

Ruth Willet, KM4LAO, shares her satellite expertise at the AMSAT Dayton Hamvention booth. [Credit: Katie Allen, WY7YL]
AMSAT is actively seeking volunteers to assist with booth activities and invites enthusiasts to dedicate their time. Last year, around 20 volunteers played crucial roles in fostering meaningful interactions with attendees. Volunteers, whether able to commit a few hours or the entire weekend, are warmly encouraged to participate.

Aligned with this year’s theme of “Expanding our Community,” AMSAT aims to strengthen its presence by recruiting new members and volunteers. For those eager to be part of AMSAT’s presence at Dayton Hamvention or request more information about volunteering, Phil Smith, W1EME, AMSAT Hamvention Team Leader, serves as the point of contact. To volunteer or inquire further, individuals can reach out to Phil via email at w1eme [at] amsat.org. Your involvement not only enriches the event but also contributes to the vibrant amateur radio community.

[ANS thanks Phil Smith, W1EME, AMSAT Hamvention Team Leader, for the above information]


AMSAT AO-109 (Fox-1E) Satellite Sets New Processor Uptime Record

AMSAT’s AO-109, also known as Fox-1E, has recently achieved a remarkable milestone. Launched in January 2021, this satellite operates with an 8 mW signal, best suited for CW and FT4 communications among amateur radio enthusiasts. Recent telemetry data from the Dwingeloo Radiotelescope in The Netherlands has revealed an impressive feat: AO-109 has set a new record for processor uptime. This information was gathered by Alan Biddle, WA4SCA, who has meticulously monitored telemetry reports on a daily basis and calculated the duration of each reset, allowing for precise correlation of telemetry frames with UTC time.

The Fox satellites are designed to undergo onboard computer resets triggered by factors like radiation exposure and low battery voltage. Time on these satellites is measured by counting resets plus the duration since the last reset. It is common for the Fox satellites to reset every few days or weeks, especially when passing over the South Atlantic Anomaly. However, the processor on AO-109 has been running continuously since September 2023, accumulating over 18 million seconds of uptime—far surpassing any other Fox satellite.

Launched on January 17, 2021, as part of the ELaNa 20 mission using a LauncherOne rocket operated by Virgin Orbit, AO-109 was carried aloft by a modified Boeing 747 named “Cosmic Girl” from the Mojave Air and Space Port in California, United States. After reaching an altitude of approximately 35,000 feet (11,000 meters), the rocket was released into space. This launch, conducted under NASA’s CubeSat Launch Initiative program, marked the beginning of the satellite’s mission to facilitate amateur radio communications and technology research.

AO-109 (Fox-1E) Satellite is Expected to Re-enter Earth’s Atmosphere in April 2024. [Credit: AMSAT]
AO-109 represents the fifth iteration of the “Fox” 1U amateur radio satellites series developed by AMSAT, featuring a 30KHz linear transponder radio. Upon becoming operational on July 20, 2021, AO-109 embarked on a mission to serve both amateur radio and technology research objectives. Among its key payloads is RadFXSat-2, a collaboration with Vanderbilt University, aimed at studying the effects of space radiation on specific SRAM types. Consistent with the Fox 1A design blueprint, Fox-1E is equipped with a 2-meter whip antenna and a 70 cm whip antenna.

With its anticipated re-entry into Earth’s atmosphere in the coming weeks, users are encouraged to make the most of AO-109 while it’s still operational. Current reports suggest the satellite’s altitude is around 300 km, which is lower than the ISS orbiting altitude of 370–460 km.

[ANS thanks Burns Fisher, WB1FJ, and Alan Biddle, WA4SCA, for the above information]


The 2024 AMSAT President’s Club coins are here now!
Help Support GOLF and Fox Plus

Join the AMSAT President’s Club today and help
Keep Amateur Radio in Space!
https://www.amsat.org/join-the-amsat-presidents-club/


ESA Unveils Proba-3 Mission: Artificial Solar Eclipses on Demand

Next week, a celestial spectacle will unfold across North America as millions of people witness a total solar eclipse. Alongside eager spectators, solar physicists worldwide are gearing up for the event, drawn by the opportunity to study the Sun’s enigmatic corona, typically obscured by its intense luminosity. However, thanks to a innovative initiative by the European Space Agency (ESA), sustained examination of the solar corona will soon become feasible through the Proba-3 mission.

In Belgium last week, the European Space Agency revealed the spacecraft pair which constitute the Proba-3 mission. This initiative aims to generate orbital solar eclipses at will, providing researchers with extended periods to scrutinize the Sun’s ethereal corona. The mission comprises two spacecraft: the Occulter and the Coronagraph. Positioned approximately 150 meters apart, these spacecraft will align meticulously with the Sun, with the Occulter casting a shadow onto the Coronagraph, effectively blocking out the Sun’s glare and unveiling the corona.

Dietmar Pilz, ESA’s Director of Technology, Engineering, and Quality, explains, “The two spacecraft will act as if they are one enormous 150-meter-long instrument.” However, achieving such precision poses immense technical challenges. Even the slightest misalignment could disrupt the mission’s efficacy. Consequently, the development process, spearheaded by a consortium of ESA Member States led by Spain and Belgium, has been extensive.

Rendering of Proba-3 Occulter and Coronagraph Spacecraft above Earth [Credit: European Space Agency]
The fundamental concept of generating artificial solar eclipses in orbit isn’t novel. Previous attempts, such as the Apollo-Soyuz Test Project in 1975, have explored similar endeavors. However, Proba-3 seeks to institutionalize this capability through precise formation flying, enabling up to six hours of continuous observation per orbit lasting 19 hours and 36 minutes.

Solar eclipses, a consequence of the fortunate alignment of the Sun and the Moon, unveil the solar corona — a region of profound scientific and practical significance. Significantly hotter than the Sun’s surface, the corona influences space weather, solar wind, and phenomena like coronal mass ejections, which can impact satellite operations and terrestrial communications networks.

Proba-3’s groundbreaking approach involves orchestrating the Occulter and Coronagraph to operate as a unified entity, thus minimizing diffraction effects and maximizing the observation of the corona. This collaboration, facilitated by advanced positioning technologies, promises to unveil the mysteries of the corona within the range of 3 to 1.1 solar radii from the Sun.

Occulter and Coronagraph Spacecraft Undergoing Integration Testing at Redwire’s Belgium Facility [Credit: ESA]
The mission’s autonomy is paramount, with precise formation flying orchestrated autonomously to minimize external perturbations. This autonomy enables the spacecraft to maintain precise alignment for optimal observation of the corona while passively drifting during the remainder of the orbit.

Beyond its scientific implications, the success of Proba-3 could herald a new era of space missions, facilitating endeavors like in-orbit satellite servicing and deploying larger-scale space infrastructure. Moreover, the mission’s instruments, like ASPIICS and the radiometer, hold promise for climate modeling and advancing our understanding of solar dynamics.

As the world awaits the North American total solar eclipse, members of Proba-3’s science team seize the opportunity to test mission hardware. Components like polarizing filter wheels and alternative LED technologies will undergo rigorous examination, further refining the mission’s capabilities.

[ANS thanks the European Space Agency for the above information]


GridMasterMap Satellite Top 100 Rovers April 2024 Rankings

The April 2024 rankings for the Top 100 Rovers (Mixed LEO/MEO/GEO) in satellite operations, as determined by @GridMasterMap on Twitter, has been released. The ranking is determined by the number of grids and DXCC entities activated, taking into account only those grids where a minimum number of QSOs logged on the gridmaster.fr website have been validated by a third party. Grid numbers do not directly reflect the exact number of activations. Satellite operators are encouraged to upload their LoTW satellite contacts to https://gridmaster.fr in order to provide more accurate data.

Updated: 2024-04-02

1 ND9M 26 N5BO 51 SP5XSD 76 FG8OJ
2 NJ7H 27 K8BL 52 AD7DB 77 PT9BM
3 JA9KRO 28 LU5ILA 53 JL3RNZ 78 KJ7NDY
4 N5UC 29 KE4AL 54 F4DXV 79 KI7UXT
5 UT1FG 30 DL2GRC 55 KE9AJ 80 YU0W
6 OE3SEU 31 VE3HLS 56 KI7QEK 81 WA9JBQ
7 DL6AP 32 KB5FHK 57 PA3GAN 82 N4DCW
8 WI7P 33 KI7UNJ 58 N8RO 83 HB9GWJ
9 HA3FOK 34 LA9XGA 59 XE1ET 84 KB2YSI
10 K5ZM 35 F4BKV 60 KM4LAO 85 N0TEL
11 N6UA 36 N7AGF 61 VE1CWJ 86 VE3GOP
12 N9IP 37 JO2ASQ 62 SM3NRY 87 KI0KB
13 WY7AA 38 XE3DX 63 N4UFO 88 JM1CAX
14 W5PFG 39 K7TAB 64 VA3VGR 89 CU2ZG
15 AK8CW 40 KE0PBR 65 W1AW 90 K0FFY
16 AD0DX 41 KE0WPA 66 VA7LM 91 KG4AKV
17 DP0POL 42 N6DNM 67 PT2AP 92 AF5CC
18 WD9EWK 43 PR8KW 68 M1DDD 93 VE6WK
19 AD0HJ 44 AC0RA 69 DL4EA 94 W8MTB
20 ON4AUC 45 EB1AO 70 AA8CH 95 VE7PTN
21 KX9X 46 JK2XXK 71 N4AKV 96 DK9JC
22 KG5CCI 47 W7WGC 72 LU4JVE 97 K6VHF
23 ND0C 48 EA4NF 73 VE1VOX 98 N6UTC
24 DJ8MS 49 VK5DG 74 W8LR 99 PT9ST
25 F5VMJ 50 AA5PK 75 DF2ET 100 VO2AC

[ANS thanks @GridMasterMap for the above information]


Need new satellite antennas?
Purchase an M2 LEO-Pack from the AMSAT Store!When you purchase through AMSAT, a portion of the proceeds goes towards
Keeping Amateur Radio in Space.
https://amsat.org/product-category/hardware/


Changes to AMSAT-NA TLE Distribution for April 5, 2024

Two Line Elements or TLEs, often referred to as Keplerian elements or keps in the amateur community, are the inputs to the SGP4 standard mathematical model of spacecraft orbits used by most amateur tracking programs. Weekly updates are completely adequate for most amateur satellites. TLE bulletin files are updated daily in the first hour of the UTC day. New bulletin files will be posted immediately after reliable elements become available for new amateur satellites. More information may be found at https://www.amsat.org/keplerian-elements-resources/.

The following satellite has been removed from this week’s AMSAT-NA TLE distribution:

XW-2F NORAD Cat ID 40910 Decayed from orbit on or about 01 April 2024

[ANS thanks AMSAT Orbital Elements page for the above information]


ARISS NEWS

Amateurs and others around the world may listen in on contacts between amateurs operating in schools and allowing students to interact with astronauts and cosmonauts aboard the International Space Station. The downlink frequency on which to listen is 145.800 MHz worldwide.

Recently Completed Contacts

Embry-Riddle Aeronautical University, Daytona Beach, FL, direct via NN4ER
The ISS callsign was NA1SS
The crewmember was Matthew Dominick KCØTOR
The ARISS mentor was AJ9N
Contact was successful: Wed 2024-04-03 15:22:17 UTC
Watch the contact at https://portal.stretchinternet.com/eraudaytona/portal.htm?eventId=754085&streamType=video
Congratulations to the Embry-Riddle Aeronautical University students, Matthew, NN4ER, mentor AJ9N!

Ryazan State Radio Engineering University, Ryazan, Russia, direct via RK3SWB (***)
The ISS callsign was RSØISS
The crewmember was Oleg Novitskiy
The ARISS mentor was RV3DR
Contact was successful for Wed 2024-04-03 12:30 UTC
Congratulations to the Ryazan State Radio Engineering University students, Oleg, RK3SWB, and mentor RV3DR!

Aznakaevsky District students, Tatarstan, Russia, direct via RC4P
The ISS callsign was RSØISS
The crewmember was Aleksandr Grebyonkin RZ3DSE
The ARISS mentor was RV3DR
Contact was successful: Thu 2024-04-04 10:10 UTC
Congratulations to the Aznakaevsky District students, Aleksandr, mentor RV3DR, and RC4P!

University College of the Immanuel Kant Baltic Federal University, Kaliningrad, Russia, direct via R2FDB
The ISS callsign was RSØISS
The crewmember was Marina Vasilevskaya
The ARISS mentor was RV3DR
Contact was successful: Thu 2024-04-04 13:19 UTC
Congratulations to the University College of the Immanuel Kant Baltic Federal University students, Marina, mentor RV3DR, and R2FDB!

Collège Théodore Monod, Gagny, France, direct via TM2ISS
The ISS callsign was OR4ISS
The crewmember was Matthew Dominick KCØTOR
The ARISS mentor was F6ICS
Contact was successful: Thu 2024-04-04 14:51:07 UTC
Congratulations to the Collège Théodore Monod students!

Upcoming Contacts

Volga State University, Russia, direct via TBD
The ISS callsign is presently scheduled to be RSØISS
The scheduled crewmember is Aleksandr Grebyonkin RZ3DSE
The ARISS mentor is RV3DR
Contact is go for Sun 2024-04-07 09:20 UTC

Tooele County School District, Tooele, UT, direct via W7CBL
The ISS callsign is presently scheduled to be NA1SS
The scheduled crewmember is Mike Barratt KD5MIJ
The ARISS mentor is AJ9N
Contact is go for: Mon 2024-04-08 17:45:07 UTC

ARTADEMIA, Milano, Italy, AND Scuola Secondaria I grado “A. Moro”, Ponte Lambro (CO), Italy, direct via IK1SLD
The ISS callsign is presently scheduled to be OR4ISS
The scheduled crewmember is Jeanette Epps KF5QNU
The ARISS mentor is IZ2GOJ
Contact is go for: Wed 2024-04-10 13:16:48 UTC

The crossband repeater continues to be active (145.990 MHz up {PL 67} & 437.800 MHz down). If any crewmember is so inclined, all they have to do is pick up the microphone, raise the volume up, and talk on the crossband repeater. So give a listen, you just never know.

The packet system is also active (145.825 MHz up & down).

As always, if there is an EVA, a docking, or an undocking; the ARISS radios are turned off as part of the safety protocol.

Note, all times are approximate. It is recommended that you do your own orbital prediction or start listening about 10 minutes before the listed time.

The latest information on the operation mode can be found at https://www.ariss.org/current-status-of-iss-stations.html

The latest list of frequencies in use can be found at https://www.ariss.org/contact-the-iss.html

[ANS thanks Charlie Sufana, AJ9N, one of the ARISS operation team mentors for the above information]


Upcoming Satellite Operations

EL, LIBERIA: Satellite activations include RS-44, IO-117, and QO-100
The Czech DXpedition Team (Petr/OK1BOA, Palo/OK1CRM, Petr/OK1FCJ,
Pavel/OK1GK, Ruda/OK2ZA, Ludek/OK2ZC, Karel/OK2ZI, and David/OK6DJ)
signs A8OK between April 9 and 16 from Liberia. QRV on 160-6m (CW,
SSB, RTTY, PSK, FT8/4) and via satellite. For more information see:
https://www.cdxp.cz and https://www.facebook.com/groups/1472348776313779
QSL via OK6DJ OQRS or via LoTW.

(Thanks to DXNL 2400 – April 3, 2024 DX Newsletter)

A growing number of satellite rovers are currently engaged in sharing their grid square activations on https://hams.at. By visiting the website, you gain easy access to comprehensive information about the operators responsible for activating specific grid squares. Additionally, you have the ability to assess the match score between yourself and a particular rover for a given pass, while also being able to identify the upcoming satellite passes that are accessible from your location.

[ANS thanks Ian Parsons, K5ZM, AMSAT Rover Page Manager, for the above information]


Hamfests, Conventions, Maker Faires, and Other Events

AMSAT Ambassadors provide presentations, demonstrate communicating through amateur satellites, and host information tables at club meetings, hamfests, conventions, maker faires, and other events.

2024 CubeSat Developer’s Workshop
Tuesday April 23rd – Thursday April 25th
Cal Poly, San Luis Obispo, CA
https://www.cubesatdw.org/

Dayton Hamvention 2024
Friday May 17th – Sunday May 19th
Greene County Fairgrounds and Expo Center
120 Fairground Road
Xenia, OH 45385
https://hamvention.org


Want to fly the colors on your own grid expedition?
Get an AMSAT car flag and other neat stuff from our Zazzle store!
25% of the purchase price of each product goes towards Keeping Amateur Radio in Space

Keeping Amateur Radio in Space
https://www.zazzle.com/amsat_gear


Satellite Shorts From All Over

+ NASA will launch three scientific-sounding rockets into the moon’s shadow on April 8 during a partial solar eclipse across North America, coinciding with a total solar eclipse in certain areas. The project, named Atmospheric Perturbations Around The Eclipse Path (APEP), aims to investigate how the sudden drop in sunlight and temperature during the eclipse affects Earth’s upper atmosphere. Named after the serpent deity from ancient Egyptian mythology, APEP will involve rockets launched from Wallops Flight Facility in Virginia. These rockets, equipped with secondary instruments, will measure changes in electric and magnetic fields, density, and temperature as they penetrate the ionosphere during the eclipse. Understanding these perturbations in the ionosphere is crucial for predicting disturbances that impact satellite communications and ensuring the smooth operation of our communication-dependent world. (ANS thanks Jamie Carter, Senior Contributor, Forbes, for the above information)

+ The final launch of United Launch Alliance’s Delta Heavy IV rocket is scheduled for April 9, marking the end of a 64-year legacy for the Delta family. The highly successful career of the Delta Heavy IV comes to a close as it launches a classified payload, NROL-70, on behalf of the U.S. National Reconnaissance Office (NRO). The NRO, responsible for the country’s surveillance satellites, maintains secrecy about the specifics of its missions. This final launch aims to enhance the NRO’s capabilities in providing intelligence to national decision-makers and supporting global humanitarian efforts. United Launch Alliance plans to retire both the Delta IV Heavy and the Atlas V to pave the way for its new Vulcan Centaur rocket, with the Atlas V scheduled for missions until 2029. The era of the Delta family concludes amidst a transition towards more advanced launch technologies and capabilities. (ANS thanks Brett Tingley, Managing Editor, Space.com, for the above information)

+ Despite facing numerous challenges, including malfunctioning temperature sensors and unused battery cells, Japan’s SLIM Moon lander has defied expectations by surviving a second lunar night, despite being in a precarious position with its thrusters pointed upward and solar arrays facing away from the Sun. The Japan Aerospace Exploration Agency (JAXA) received a signal from the lander indicating it had restarted after hibernating to avoid freezing temperatures on the Moon’s surface. Initially forced to shut down due to insufficient electricity generation from its solar cells, SLIM has persisted against the odds, reviving itself twice since its landing on January 19. Although not designed to endure the Moon’s harsh conditions, the lander has continued to function, prompting uncertainty about JAXA’s future plans for the resilient spacecraft after it successfully achieved its primary mission goal of a precise lunar landing within a 328-foot radius. (ANS thanks Passant Rabie, Gizmodo, for the above information)

+ China’s Queqiao-2 satellite successfully launched from the Wenchang Space Launch Site on March 20th, reaching lunar orbit after a perilune braking maneuver near the Moon’s surface on March 24th. Positioned to relay communications for future lunar missions, including Chang’e-4 and Chang’e-6, Queqiao-2’s orbit will be adjusted to facilitate these missions and support China’s ambitious lunar exploration program. Accompanying experimental satellites, Tiandu-1 and -2, also entered lunar orbit, conducting tests in communication and navigation. Queqiao-2’s strategic orbit placement in the Moon’s maria region holds significance for China’s lunar exploration history, including past probe landings fifteen years ago on March 1, 2009. China’s lunar missions, aiming to scout resources and establish a lunar base, signify a substantial endeavor parallel to NASA’s Artemis Program, which plans to establish a sustained presence on the Moon with international collaboration. (ANS thanks Matt Williams, Universe Today, for the above information)


Join AMSAT today at https://launch.amsat.org/

In addition to regular membership, AMSAT offers membership to:

* Societies (a recognized group, clubs or organization).
* Primary and secondary school students are eligible for membership at one-half the standard yearly rate.
* Post-secondary school students enrolled in at least half-time status shall be eligible for the student rate for a maximum of 6 post-secondary years in this status.
* Memberships are available for annual and lifetime terms.

Contact info [at] amsat.org for additional membership information.

73 and remember to help Keep Amateur Radio in Space!

This week’s ANS Editor, Mitch Ahrenstorff, ADØHJ
ad0hj [at] amsat.org

ANS-070 AMSAT News Service Weekly Bulletins

In this edition:

* SpaceX’s Transporter-10 Successfully Launches Over Fifty Satellites
* Vostochny Spaceport Sends Meteor-M2-4 Weather Satellite Into Orbit
* NASA’s SpaceX Crew-8 Launches to International Space Station
* GridMasterMap Satellite Top 100 Rovers March 2024 Rankings
* Changes to AMSAT-NA TLE Distribution for March 8, 2024
* ARISS News
* Upcoming Satellite Operations
* Hamfests, Conventions, Maker Faires, and Other Events
* Satellite Shorts From All Over

The AMSAT News Service bulletins are a free, weekly news and information service of AMSAT, the Radio Amateur Satellite Corporation. ANS publishes news related to Amateur Radio in Space including reports on the activities of a worldwide group of Amateur Radio operators who share an active interest in designing, building, launching and communicating through analog and digital Amateur Radio satellites.

The news feed on https://www.amsat.org publishes news of Amateur Radio in Space as soon as our volunteers can post it.

Please send any amateur satellite news or reports to: ans-editor [at] amsat.org

You can sign up for free e-mail delivery of the AMSAT News Service Bulletins via the ANS List; to join this list see: https://mailman.amsat.org/postorius/lists/ans.amsat.org/

ANS-070 AMSAT News Service Weekly Bulletins

To: All RADIO AMATEURS
From: Radio Amateur Satellite Corporation
712 H Street NE, Suite 1653
Washington, DC 20002

DATE 2024 Mar 10


SpaceX’s Transporter-10 Successfully Launches Over Fifty Satellites

SpaceX successfully executed its tenth Transporter rideshare mission, showcasing the continued high demand for satellite deployment services. The flawless launch took place at Vandenberg Space Force Base, on March 4th at 5:05 p.m. EST, where a Falcon 9 rocket carried 53 small satellites into orbit. While this success underscores the persistent need for such services from satellite developers, it also brings attention to emerging challenges in maintaining space situational awareness.

Among the diverse payloads was SONATE-2, a 6U+ CubeSat developed by the University of Wuerzburg in Germany. This satellite serves as a technology demonstration for artificial intelligence hardware, software, and machine learning techniques, coupled with an educational component through the DLR School Lab. SONATE-2’s amateur payload includes a VHF transceiver and an AI payload with optical sensors, providing regular SSTV downlinks, an APRS digipeater, and CW beacon.

The mission aims to engage students in aerospace and computer science engineering programs, offering practical skills and participation in satellite operations. SONATE-2 reported successful operation, with over 1000 telemetry frames downloaded in the first day post-launch, indicating a safe and stable state of the satellite.

The SpaceX Transporter-10 Payload Stack. Annotations by https://twitter.com/GewoonLukas_ [Credit: SpaceX]
However, the CroCube mission faced a slight setback, with the first Croatian satellite now scheduled for launch on Transporter-11 in June 2024. This decision, prompted by tightened technical conditions set by Exolaunch and SpaceX, aims to ensure project criteria are met, minimizing risks. CroCube, a 1U CubeSat designed for amateur radio and Earth surface imaging, sees this delay as an opportunity to focus on key activities, including ground station completion, mission promotion, educational events, and finalizing the financial structure.

The Transporter-10 mission also witnessed the deployment of various payloads from different companies, showcasing innovation in satellite inspection, proximity operations, and technology testing. Notable deployments include Spire’s Lemur CubeSats, Iceye’s radar mapping satellites, and Satellogic’s imaging satellite. Lynk Global, in the process of going public, launched two satellites to fund its direct-to-device constellation development.

SONATE-2 is Equipped with Amateur Radio SSTV, Digipeater, and CW Beacon. [Credit: University of Würzburg]
Startups such as Unseenlabs, Loft Orbital, Atomos Space, True Anomaly, Quantum Space, and Sidus Space seized the opportunity, deploying their first satellites. This diverse array of payloads highlights the industry’s commitment to pushing boundaries in space exploration. Another notable payload, MethaneSAT, developed by Ball Aerospace for the Environmental Defense Fund, aims to track global methane emissions with high-resolution precision, contributing to environmental monitoring efforts.

Despite the success of Transporter-10, challenges in space situational awareness have surfaced. Owen Marshall of LeoLabs highlighted a degradation in cataloging objects after launch, particularly in rideshare missions where the median catalog time can exceed two weeks. This delay poses risks to satellite operators’ communication capabilities, emphasizing the need for enhanced tracking capabilities in the era of growing satellite deployments.

As the space industry evolves, addressing these challenges becomes crucial to ensure the sustainability and safety of activities in Earth’s orbit. The success of SpaceX’s Transporter-10 mission underscores the industry’s vitality, but the spotlight on emerging challenges signals the need for continual innovation and collaboration to navigate the complexities of our expanding presence in space.

[ANS thanks Jeff Foust, SpaceNews, for the above information]


Vostochny Spaceport Sends Meteor-M2-4 Weather Satellite Into Orbit

On February 29, 2024, the Vostochny spaceport witnessed the successful launch of a Soyuz-2-1b rocket, inaugurating the first mission of the year from this spaceport. On board was the Meteor-M2-4 weather spacecraft, a notable addition to the Meteor-M series, alongside several secondary payloads, including an Iranian micro-satellite dedicated to Earth observation.

Developed by the Moscow-based VNIIEM Corporation, Meteor-M2-4, weighing nearly three tons, boasts advanced instruments designed for comprehensive monitoring of global weather patterns, the ozone layer, ocean surface temperature, and ice conditions. Recognized for its military applications by the Russian space agency, Roskosmos, this mission marked a significant stride in space exploration.

Meteor-M2-4 encountered delays in its journey, originally slated for a December 26, 2023 launch. However, due to multiple rescheduling, the liftoff finally took place on February 29, 2024. The spacecraft, delivered to the launch site on December 28, 2023, underwent meticulous preparations, including fueling and integration with the launch vehicle, ultimately culminating in a successful liftoff.

Meteor-M 2-4 Satellite / Secondary Payloads Encapsulated in Payload Fairing [Credit: Roscosmos]
Following the standard ascent profile for Meteor satellites, the launch trajectory headed northwest over eastern Russia, reaching a near-polar orbit with an inclination of approximately 98.57 degrees. The fairing protecting the payload separated during the second stage operation, with subsequent stage separations carefully planned for safe impact zones in the Amur Region and the Sakha Republic.

The Fregat upper stage took charge of the final payload deployment, executing precise maneuvers over the Arctic and Antarctica. Approximately 59 minutes and 46 seconds after liftoff, the Meteor-M2-4 satellite was successfully released, accomplishing its primary mission. The Fregat then proceeded to deploy the secondary payloads into their designated orbits.

Meteor M2-4 Image Decoded Using a Raspberry Pi 5 and SatDump by N5ZKK [Credit: David Trolinger]
The Russian Meteor M2-4 satellite commenced transmitting weather images within the first day in orbit. Known for their accessibility to amateur users, Meteor M satellites operate around 137 MHz, making them receivable with a RTL-SDR dongle and suitable satellite antennas. The satellite also transmits in the L-band, enabling reception with a 60cm or larger dish and motorized or hand tracking. Unlike previous satellites in the series, M2-4 experienced a smooth launch and deployment, with reports indicating excellent signal strength and clear image reception in both VHF and L-band frequencies. Two-Line Elements (TLE’s) and the SatDump decoding software (https://github.com/SatDump/SatDump) have been updated to support Meteor M2-4, simplifying access for enthusiasts through Github updates.

Space historian Jonathan McDowell shared valuable insights into the flight, detailing each Fregat maneuver and its impact on the satellite cluster. While the majority of the secondary payloads adhered to the expected orbits, anomalies in the deployment of some SITRO satellites prompted further investigation. The launch of Meteor-M2-4 and its accompanying payloads stands as a noteworthy accomplishment for Russia’s space program, contributing significantly to global endeavors in weather monitoring, Earth observation, and satellite technology development.

[ANS thanks Anatoly Zak, RussianSpaceWeb.com and RTL-SDR.com for the above information]


The 2024 Coins Are Here Now!
Help Support GOLF and Fox Plus.
Join the AMSAT President’s Club today!


NASA’s SpaceX Crew-8 Launches to International Space Station

After overcoming multiple delays in the past few weeks, a diverse team of astronauts lifted off into orbit late on a Sunday evening. NASA’s SpaceX Crew-8 mission achieved a flawless launch from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 10:53 p.m. EST on March 3rd, propelling four astronauts toward the International Space Station (ISS).

Marking the eighth collaboration between NASA and SpaceX for crew rotations, the Crew-8 mission embarked on a scientific journey to the ISS. The Crew-8 team is led by Commander Matthew Dominick, KCØTOR, Pilot Michael Barratt, KD5MIJ, Mission Specialist Jeanette Epps, KF5QNU, and Flight Engineer Alexander Grebenkin, RZ3DSE. Dominick, a first-time astronaut, will serve as a mission specialist during Expedition 70/71. Barratt, with two spaceflights under his belt, brings valuable experience to the mission. Epps, NASA’s first-time astronaut selected in 2009, plays a crucial role in monitoring the spacecraft during dynamic flight phases. Grebenkin, on his inaugural space mission, serves as a flight engineer during Expeditions 70/71.

Members of NASA’s SpaceX Crew-8 Standing in Front of a SpaceX Falcon 9 Rocket [Credit: SpaceX]
NASA Administrator Bill Nelson congratulated NASA and SpaceX, stating, “On this eighth crew rotation mission, we are once again showing the strength of our commercial partnerships and American ingenuity that will propel us further in the cosmos.” The crew’s mission aboard the ISS involves conducting over 200 science experiments and technology demonstrations to support space exploration and benefit humanity on Earth.

The Dragon spacecraft, named Endeavour, autonomously docked with the forward port of the station’s Harmony module under the vigilant watch of SpaceX and NASA mission control centers in Hawthorne, California, and Houston, Texas. The successful docking occurred on Tuesday, March 5th, at 2:28 a.m. EST over the central North Atlantic.

Crew-8’s arrival at the ISS expands the existing Expedition 70 crew, comprising astronauts from NASA, ESA, JAXA, and Roscosmos. With the temporary addition of Crew-8 members, the ISS will briefly host eleven individuals until the return of Crew-7 members a few days later.

Current Crew of International Space Station until Crew-7 Departs on March 10 [Credit: NASA TV]
Beyond the space environment, Crew-8 aims to conduct various scientific experiments to advance human exploration beyond low Earth orbit and address challenges faced by humanity on Earth. These experiments include studies on brain organoids to understand neurodegenerative disorders, the effects of microgravity on plant growth, and shifts in body fluids during spaceflight.

The ISS continues to serve as a crucial platform for research and development, with NASA’s commitment to maximizing its utility. Research conducted onboard not only benefits life on Earth but also lays the groundwork for future missions, such as NASA’s Artemis program, aimed at returning humans to the Moon and beyond.

[ANS thanks NASA for the above information]


GridMasterMap Satellite Top 100 Rovers March 2024 Rankings

The March 2024 rankings for the Top 100 Rovers (Mixed LEO/MEO/GEO) in satellite operations, as determined by @GridMasterMap on Twitter, has been released. The ranking is determined by the number of grids and DXCC entities activated, taking into account only those grids where a minimum number of QSOs logged on the gridmaster.fr website have been validated by a third party. Grid numbers do not directly reflect the exact number of activations. Satellite operators are encouraged to upload their LoTW satellite contacts to https://gridmaster.fr in order to provide more accurate data.

Updated: 2024-03-06

1 ND9M 26 N5BO 51 SP5XSD 76 N4AKV
2 NJ7H 27 K8BL 52 AD7DB 77 DF2ET
3 JA9KRO 28 LU5ILA 53 F4DXV 78 YU0W
4 N5UC 29 KE4AL 54 JL3RNZ 79 DL4EA
5 UT1FG 30 DL2GRC 55 KE9AJ 80 KJ7NDY
6 OE3SEU 31 VE3HLS 56 KI7QEK 81 N4DCW
7 WI7P 32 KB5FHK 57 N8RO 82 WA9JBQ
8 DL6AP 33 KI7UNJ 58 XE1ET 83 N0TEL
9 HA3FOK 34 LA9XGA 59 VE1CWJ 84 VE3GOP
10 N6UA 35 F4BKV 60 KM4LAO 85 KI0KB
11 K5ZM 36 N7AGF 61 PA3GAN 86 KB2YSI
12 N9IP 37 JO2ASQ 62 N4UFO 87 JM1CAX
13 WY7AA 38 XE3DX 63 SM3NRY 88 CU2ZG
14 W5PFG 39 K7TAB 64 W1AW 89 K0FFY
15 AD0DX 40 KE0PBR 65 VA7LM 90 KG4AKV
16 AK8CW 41 KE0WPA 66 VA3VGR 91 HB9GWJ
17 DP0POL 42 PR8KW 67 PT2AP 92 W8MTB
18 WD9EWK 43 AC0RA 68 M1DDD 93 VE7PTN
19 AD0HJ 44 N6DNM 69 AA8CH 94 DK9JC
20 ON4AUC 45 EB1AO 70 LU4JVE 95 AF5CC
21 KG5CCI 46 JK2XXK 71 VE1VOX 96 K6VHF
22 KX9X 47 W7WGC 72 FG8OJ 97 VE6WK
23 ND0C 48 EA4NF 73 PT9BM 98 N6UTC
24 F5VMJ 49 VK5DG 74 KI7UXT 99 PT9ST
25 DJ8MS 50 AA5PK 75 W8LR 100 VO2AC

[ANS thanks @GridMasterMap for the above information]


Need new satellite antennas?
Purchase an M2 LEO-Pack from the 
AMSAT Store!

When you purchase through AMSAT, a portion of the proceeds goes towards Keeping Amateur Radio in Space.


Changes to AMSAT-NA TLE Distribution for March 8, 2024

Two Line Elements or TLEs, often referred to as Keplerian elements or keps in the amateur community, are the inputs to the SGP4 standard mathematical model of spacecraft orbits used by most amateur tracking programs. Weekly updates are completely adequate for most amateur satellites. Elements in the TLE bulletin files are updated daily. TLE bulletin files are updated to add or remove satellites as necessary Thursday evenings around 2300 UTC, or more frequently if new high interest satellites are launched. More information may be found at https://www.amsat.org/keplerian-elements-resources.

CUBEL-1 NORAD Cat ID 49017 Decayed from orbit on or about 06 February 2024

[ANS thanks AMSAT Orbital Elements page for the above information]


ARISS NEWS

Amateurs and others around the world may listen in on contacts between amateurs operating in schools and allowing students to interact with astronauts and cosmonauts aboard the International Space Station. The downlink frequency on which to listen is 145.800 MHz worldwide.

ARISS-USA Director of Engineering, Randy Berger, WAØD, recently spoke to ARISS fan Michael Randazzo, KO4PDI. They covered Ham Radio gear on the ISS and more. See the interview at Michael’s YouTube channel: https://www.youtube.com/watch?v=_sdW_mhbUew

Recently Completed Contacts

“IES Pedro Simón” Abril High School, Alcaraz, Spain, telebridge via K6DUE
The ISS callsign was NA1SS
The scheduled crewmember was Loral O’Hara KI5TOM
The ARISS mentor was IKØUSO
Contact successful: Mon 2024-03-04 11:21:02 UTC
Watch for Livestream at https://www.youtube.com/watch?v=9Xgk4YZT5w4

Upcoming Contacts

No upcoming contacts scheduled

As always, if there is an EVA, a docking, or an undocking; the ARISS radios are turned off as part of the safety protocol.

The crossband repeater continues to be active (145.990 MHz up {PL 67} & 437.800 MHz down). If any crewmember is so inclined, all they have to do is pick up the microphone, raise the volume up, and talk on the crossband repeater. So give a listen, you just never know.

The Service Module radio is currently misconfigured. SSTV radio is currently stowed.

Note, all times are approximate. It is recommended that you do your own orbital prediction or start listening about 10 minutes before the listed time.

The latest information on the operation mode can be found at https://www.ariss.org/current-status-of-iss-stations.html

The latest list of frequencies in use can be found at https://www.ariss.org/contact-the-iss.html

[ANS thanks Charlie Sufana, AJ9N, one of the ARISS operation team mentors for the above information]


Upcoming Satellite Operations

PJ2, CURACAO: Andreas, DK5ON, is going to pay a visit to Curacao from March 11 to 27. QRV as PJ2/DK5ON on 80-6m, maybe also on 160m and via satellites, on CW, SSB, FT4/8. QSL via DK5ON (d/B), ClubLog OQRS, LoTW.  Thanks to DXNL DARC DX Newsletter March 6, 2024 (http://www.darcdxhf.de).

NOIRMOUTIER ISLAND SAT DXPEDITION 2024
F4DXV Jérôme (@F4DXV) and EA4NF Philippe (@EA4NF_SAT) announced that they will be activating Noirmoutier Island EU-064  IN86 from April 1 to 4, 2024 with the special callsign TM4J
This International DXpedition is the 1st 100% SAT from this French island: GEO (QO-100) MEO (GREENCUBE IO-117) LEO (FM+SSB)
Updates available on @TM4J_SAT

A growing number of satellite rovers are currently engaged in sharing their grid square activations on https://hams.at. By visiting the website, you gain easy access to comprehensive information about the operators responsible for activating specific grid squares. Additionally, you have the ability to assess the match score between yourself and a particular rover for a given pass, while also being able to identify the upcoming satellite passes that are accessible from your location.

[ANS thanks Ian Parsons, K5ZM, AMSAT Rover Page Manager, for the above information]


Hamfests, Conventions, Maker Faires, and Other Events

AMSAT Ambassadors provide presentations, demonstrate communicating through amateur satellites, and host information tables at club meetings, hamfests, conventions, maker faires, and other events.

AMSAT-Francophone Seventh Amateur Radio Space Meeting
Saturday March 16th – Sunday March 17th
Electrolab Hackerspace à Nanterre
52 Rue Paul Lescop
92000 Nanterre, France
https://site.amsat-f.org/

JAMSAT Symposium 2024
Saturday March 23rd – Sunday March 24th
Hotel Binario Saga Arashiyama
3-4 Hiromichicho, Saga Tenryuji, Ukyo Ward
Sagano, Kyoto, Japan
https://www.jamsat.or.jp/?p=2446

2024 CubeSat Developer’s Workshop
Tuesday April 23rd – Thursday April 25th
Cal Poly, San Luis Obispo, CA
https://www.cubesatdw.org/

Dayton Hamvention 2024
Friday May 17th – Sunday May 19th
Greene County Fairgrounds and Expo Center
120 Fairground Road
Xenia, OH 45385
https://hamvention.org


Want to fly the colors on your own grid expedition?
Get an AMSAT car flag and other neat stuff from our Zazzle store!
25% of the purchase price of each product goes towards Keeping Amateur Radio in Space


Satellite Shorts From All Over

+ Congratulations to both Eddy Schebesta, OE3SEU, and Paulo Bauer Jorge, F5VMJ, for their outstanding achievements in providing satellite contacts! Eddy has achieved an impressive 132 grid squares, earning him the AMSAT VUCC/r Award #13, while Paulo has excelled with contacts from 102 grid squares, earning him AMSAT VUCC/r Award #14. The Reverse VUCC or VUCC/r Award, originally introduced by the Central States VHF Society and now carried on by AMSAT, recognizes the dedication of satellite rovers like Eddy and Paulo. For more information about this prestigious award, you can visit the AMSAT website at https://www.amsat.org/reverse-vucc-or-vucc-r-award. Keep on roving, Eddy and Paulo, and continue to inspire others in the AMSAT community with your remarkable achievements! (ANS thanks Bruce Paige, KK5DO, AMSAT Director of Contests and Awards for the above information)

+ NASA will broadcast live coverage of SpaceX Crew-7’s return to Earth from the International Space Station on March 10. The coverage will commence with a change-of-command ceremony at 11:55 a.m. EDT. Astronauts Jasmin Moghbeli, Andreas Mogensen, Satoshi Furukawa, and Konstantin Borisov will conclude their nearly six-month science mission. Weather permitting, the SpaceX Dragon spacecraft is set to undock on March 11 at 11:05 a.m., with splashdown targeted for as early as 5:35 a.m. on March 12 off the Florida coast. The live coverage will be available on NASA+, NASA Television, the NASA app, and the agency’s website, featuring farewell remarks, hatch closure, undocking, and splashdown events, as well as a media teleconference on March 12 with key participants. (ANS thanks NASA for the above information)

+ SpaceX is aiming for the third test flight of its Starship rocket on March 14, as announced through a post on the X platform. The Starship vehicle comprises a stainless-steel reusable upper stage, also known as Starship, and a Super Heavy first-stage booster, standing over 400 feet tall together. A recent critical fueling test at the Starbase facility in Texas involved pumping over 10 million pounds of liquid methane and liquid oxygen into the rocket. The upcoming launch follows two previous test flights in April 2023 and November 2023, where Starship faced issues like failure to separate from the first-stage booster and a subsequent explosion of the Super Heavy. After the second test, the FAA identified seventeen corrective actions, all of which SpaceX claims to have completed, addressing issues related to leak reduction, fire protection, and propellant vent operations. The Starship and Super Heavy, designed for full reusability, are pivotal for NASA’s Artemis 3 mission to land astronauts on the moon by 2026. (ANS thanks Brett Tingley, Space.com, for the above information)

+ NASA has identified a growing air leak on the International Space Station (ISS) located at the end of the Russian service module. The leak, situated in Russia’s Zvezda service module, initially released one pound of air per day but accelerated to over two pounds daily in early February. Despite the increased rate, NASA assures that it does not currently jeopardize the safety of the ISS crew or impact the station’s operations. Collaboration between the United States, Russia, Europe, Japan, and Canada is underway to address the situation. Roscosmos, the Russian space agency, confirms ongoing monitoring and asserts that there is no immediate threat to the crew or the station itself. The leak is in a three-foot-long area and has prompted precautionary measures, including sealing off the affected vestibule to mitigate further air loss from the rest of the space station. (ANS thanks Will Sullivan, Smithsonian Magazine, for the above information)

+ The inaugural components for Europe’s new Ariane 6 rocket have reached the port of Pariacabo in Kourou, French Guiana, transported by the container ship, Canopée. Manufactured across Europe, the central core arrived on Canopée, which uses sails to reduce emissions and save up to 30% on fuel during its 10-day, 7,000 km journey. The rocket’s stages were produced in various European locations, with the main engine and stage integrated in Les Mureaux, France, and the upper stage and insulation in Bremen, Germany. Following transport, the components were offloaded and taken to the Ariane 6 assembly building, a few kilometers away, where they will undergo integration before liftoff. The boosters, already at Europe’s Spaceport, are P120C solid propulsion boosters similar to those used for the Vega-C rocket. The central core will be assembled horizontally and then transported to the launchpad, where it will be erected, followed by the addition of boosters and the upper stage, with the goal of a summer launch for Flight Model-1. (ANS thanks the European Space Agency for the above information)


Join AMSAT today at https://launch.amsat.org/

In addition to regular membership, AMSAT offers membership to:

* Societies (a recognized group, clubs or organization).
* Primary and secondary school students are eligible for membership at one-half the standard yearly rate.
* Post-secondary school students enrolled in at least half time status shall be eligible for the student rate for a maximum of 6 post-secondary years in this status.
* Memberships are available for annual and lifetime terms.

Contact info [at] amsat.org for additional membership information.

73 and remember to help Keep Amateur Radio in Space!

This week’s ANS Editor, Mitch Ahrenstorff, ADØHJ
ad0hj [at] amsat.org